

Instrukcja obsługi

ADA-DIOC40

Moduł izolowanych wejść i wyjść cyfrowych z MODBUS

Spis treści

1.	INFORMACJE OGÓLNE	3
	1.1. INFORMACJE GWARANCYJNE	3
	1.2. OGÓLNE WARUNKI BEZPIECZNEGO UŻYTKOWANIA	3
	1.3. OZNACZENIE CE	3
	1.4. OCHRONA ŚRODOWISKA	
	1.5 SERWIS LKONSERWACIA	3
		3
2		0 3
۷.		U 3
		0 /
		- 1
		-
2		5 5
5.	ING NALOUA	5 5
		J
		J
		0
	3.3.1. FODLĄCZENIE DO MACISTRALI RO400(4W)	0
		1
		1
	3.3.4. FODLĄCZENIE REZI STANOSI KONCOWEJ RU.	1
		0
	3.4.1. FUDLACZENIE FOTOKOMORNI QSTOVFOLFQ DO WEJSCIA CTFROWEGO	9
1		9 0
4.		10
		10
Б		10
J.		10
		10
		10
	5.2.1 KON EIGURACIA PERKOŚCI TRANSMIS ILI EORMATU DANYCH	11
	5.2.2. KON EGUNACIA TREDINGGET TRANSMIST TO ONNETO DATION	11
	5.2.3 KON IGONACIA TEVRI I KOM INIKAC II MONI ILI W TEVRIE PRACY (PUN)	11
	5.2.4. NON BORCEAM TO REMOVE AND DECEMENTATE FRACT (RON)	12
		12 12
		12 12
		12
6		. 13
0.	A 1 TRYR SYGNALIZAC II ZMIANY STANILI WE IŚCIA CYEROWEGO	. 13
	6.2 TRYB KOMINIKAC II MODBI IS RTI	13
		11
	6.2.1.1. STAN WY ISCIA BINARNEGO FUNKCIA 0x01 [0X_REFERENCES]	1/
		1/
	6.2.1.3. DE JESTEV DAMIETA JACE (HOLDING PEGISTERS) ODCZYTYWANE ELINIKC IA 03 JAY - REFERENCESI	1/
		11
		1/
		14
		15
	6.2.3.3 FUNKCIA 0x03 - ODCZYT WARTOŚCI REJESTRU PAMIETA IACEGO (HOI DING REGISTER)	16
	6.2.3.4 FUNKC 14 0x05 - 7010211 WARTOOOT REPEATED THE AWAGE OF THE DING REGISTER)	10
	6.2.3.5. FUNKCIA 0X06 - ZMIANA WARTOŚCI PO JEDYNOZEGO RE JESTRU PAMIETA IACEGO (HOJ DING PEGISTI	ER)
		18
	6.2.4 SUMA KONTROLNA CRC	10
	6.3 TRYB KOMUNIKAC II SYGNALIZAC II ZMIANY STANU WE IŚCIA CYFROWEGO I MODRUS	19
7	WERSJE WYKONANIA	19
 8		10

1. INFORMACJE OGÓLNE

Dziękujemy Państwu za zamówienie produktu **Firmy CEL-MAR**. Produkt ten został gruntownie sprawdzony, przetestowany. Jeżeli wynikną jakieś problemy lub pytania podczas instalacji lub używania tego produktu, prosimy o niezwłoczny kontakt z Informacją Techniczną pod numerem +48 41 362-12-46.

1.1. INFORMACJE GWARANCYJNE

Firma CEL-MAR udziela dwuletniej gwarancji na moduł **ADA-DIOC40**, liczonej od dnia sprzedaży. Gwarancja nie pokrywa uszkodzeń powstałych z niewłaściwego użytkowania, zużycia lub nieautoryzowanych zmian. Jeżeli produkt nie działa zgodnie z instrukcją, będzie naprawiony pod warunkiem dostarczenia urządzenia do **Firmy CEL-MAR** z opłaconym transportem i ubezpieczeniem. **Firma CEL-MAR** pod żadnym warunkiem nie będzie odpowiadać za uszkodzenia wynikłe z niewłaściwego używania produktu czy na

skutek przyczyn losowych: wyładowanie atmosferyczne, powódź, pożar itp. **Firma CEL-MAR** nie ponosi żadnej odpowiedzialności za powstałe uszkodzenia i straty w tym: utratę zysków, utratę danych, straty pieniężne wynikłe z użytkowania lub niemożności użytkowania tego produktu.

Firma CEL-MAR w specyficznych przypadkach cofnie wszystkie gwarancje, przy braku przestrzegania instrukcji obsługi i nie akceptowania warunków gwarancji przez użytkownika.

1.2. OGÓLNE WARUNKI BEZPIECZNEGO UŻYTKOWANIA

Urządzenie należy montować w miejscu bezpiecznym i stabilnym (np. szafka elektroinstalacyjna), kabel zasilający powinien być tak ułożony, aby nie był narażony na deptanie, zaczepianie lub wyrywanie z obwodu zasilającego.

Nie wolno stawiać urządzenia na mokrej powierzchni.

Nie należy podłączać urządzenia do nieokreślonych źródeł zasilania,

Nie należy uszkadzać lub zgniatać przewodów zasilających.

Nie należy wykonywać podłączeń mokrymi rękami.

Nie wolno przerabiać, otwierać albo dziurawić obudowy urządzenia!

Nie wolno zanurzać urządzenia w wodzie ani żadnym innym płynie.

Nie stawiać na urządzeniu źródeł otwartego ognia: świece, lampki oliwne itp.

Całkowite wyłączenie z sieci zasilającej następuje dopiero po odłączeniu napięcia w obwodzie zasilającym.

Nie należy przeprowadzać montażu lub demontażu urządzenia jeżeli jest włączone. Może to doprowadzić do zwarcia elektrycznego i uszkodzenia urządzenia.

Urządzenie nie może być użyte do zastosowań, od których zależy życie i zdrowie ludzkie (np. medyczne).

1.3. OZNACZENIE CE

Symbol CE na urządzeniu firmy CEL-MAR oznacza zgodność urządzenia z :

- -dyrektywą kompatybilności elektromagnetycznej EMC 2014/30/WE (Electromagnetic Compatibility Directive).
 - -dyrektywą niskonąpięciową LVD 2014/35/WE(Low Voltage Directive).
 - ¹ Déklarácja zgodności jest dołączana do niniejszej instrukcji, wraz z zakupionym modułem.

1.4. OCHRONA ŚRODOWISKA

Znak ten na urządzeniu informuje o zakazie umieszczania zużytego urządzenia łącznie z innymi odpadami. Sprzęt należy przekazać do wyznaczonych punktów zajmujących się utylizacją. (Zgodnie z Ustawą o zużytym sprzęcie elektronicznym z dnia 29 lipca 2005)

1.5. SERWIS I KONSERWACJA

Moduł ADA-DIOC40 nie wymaga okresowej konserwacji. Obsługa techniczna pod numerem: +48 41 362-12-46 w godzinach 8.00-16.00 od poniedziałku do piątku.

1.6. ZAWARTOŚĆ OPAKOWANIA

Moduł ADA-DIOC40, instrukcja obsługi, rezystory terminujące Rt=120W (2 szt.), CD z ADAConfig, deklaracja CE.

2. INFORMACJE O PRODUKCIE

2.1. WŁAŚCIWOŚCI

- Praca na magistrali 4 lub 2 przewodowej w standardzie RS485 / RS422,
- Prędkość transmisji interfejsów RS485/422 (bps): 300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400,
- Format danych RS485/RS422: Liczba bitów danych: 5, 6, 7, 8; Kontrola parzystości: Brak, Parzystość, Nieparzystość; Liczba bitów stopu: 1, 2,
- Obsługiwany protokół : MODBUS-RTU,
- Sygnalizacja napięcia zasilania diodą LED,
- Sygnalizacja stanu wejścia i wyjścia diodami LED
- Zasilanie zewnętrzne od 10 do 30 VDC stabilizowane,
- Optoizolacja między interfejsem RS485 / RS422 a obwodami wejścia i wyjścia ~3kVDC,
- Izolacja galwaniczna miedzy interfejsem RS485 / RS422 a zasilaniem 1kVDC lub 3kVDC,
- Przyłączenie magistrali RS485 / RS422 i zasilania przez złącza śrubowe,
- Wbudowane zabezpieczenie przeciw zwarciowe i przeciwprzepięciowe na liniach RS485/RS422,
- Wbudowane zabezpieczenie przed odwrotnym podłączeniem zasilania,
- Obudowa zgodna ze standardem DIN 43880 do montażu w typowych szafkach elektroinstalacyjnych,

- Możliwość montażu na szynie TS35(DIN35),
- Wymiary obrysu obudowy (Sz x G x Wy) 88mm x 58mm x 90 mm.

2.2. OPIS

Moduł ADA-DIOC40 to element wykonawczy, który rozszerza systemy sterowania oparte na magistrali RS485-MODBUS o możliwość odczytywania stanu obwodów/urządzeń podłączonych do wejścia cyfrowego oraz wykonywania sterowań za pomocą wyjścia cyfrowego. ADA-DIOC40 przeznaczony jest do współpracy ze sterownikami PLC, oprogramowaniem typu SCADA i urządzeniami obsługującymi protokół MODBUS-RTU. Moduł posiada jedno izolowane wejście cyfrowe oznaczone na obudowie jako DI+ i DI- oraz jedno izolowane wyjście cyfrowe oznaczonych na obudowie jako DO+ i DO-.

Moduł może komunikować się z urządzeniami nadrzędnymi w następujących trybach komunikacji:

a/Sygnalizacji stanu DI – po każdej zmianie stanu wejścia moduł wysyła ramkę informującą o tym urządzenie nadrzędne, b/Modbus – moduł pracuje jak urządzenie typu Modbus SLAVE

c/**Sygnalizacja stanu DI i Modbus** – moduł pracuje w dwóch poprzednich trybach jednocześnie, wymaga to podłączenia 4-przewodowej magistrali RS485 od modułu do urządzenia nadrzędnego.

Zaciski 10-30VDC V+ i V- służą do podłączenia zasilania. Do zacisków TX+/A, TX-/B, RX+, RX- i GND podłączamy magistralę RS485. Moduł został wyposażony z zestaw diod LED, używanych do sygnalizacji:

stanu wejścia DI czerwona dioda LED, stanu wyjścia DO żółta dioda LED, zasilania PWR zielona dioda LED, przydatne w celach diagnostycznych. Moduł przeznaczony jest do montażu na szynie DIN35 zgodnie z normą DIN EN EN50022. Konfiguracja modułu odbywa się przez interfejs RS485/RS422 za pomocą programu ADAConfig. Możliwa jest również zmiana konfiguracji za pomocą protokołu MODBUS.

2.3. WIDOK I WYMIARY

Poniższy rysunek przedstawia moduł ADA-DIOC40

2.4. STRUKTURA IZOLACJI

W module ADA-DIOC40 izolacja galwaniczna wykonywana jest jako trójdrożna 1kVDC lub 3kVDC, w zależności od wersji wykonania opisanych w punkcie WERSJE WYKONANIA.

Rys 2. Struktura izolacji

3. INSTALACJA

Ten rozdział pokaże jak poprawnie podłączyć ADA- DIOC40 do magistrali RS485 i zasilania oraz jak podłączyć urządzenia do wejścia i wyjścia cyfrowego.

W celu minimalizacji wpływu zakłóceń z otoczenia zaleca się :

-stosowanie w instalacji kabli ekranowanych typu skrętka-wieloparowa , których ekran można podłączyć do uziemienia na jednym końcu kabla,

-układać kable sygnałowe w odległości nie mniejszej niż 25 cm od kabli zasilających,

-do zasilania modułów stosować kabel o odpowiednim przekroju ze względu na spadki napięcia,

-stosować filtry przeciwzakłóceniowe do zasilania modułów instalowanych w obrębie jednego obiektu,

-nie zasilać modułów z obwodu zasilania urządzenia generującego duże zakłócenia impulsowe np. przekaźniki,styczniki,falowniki.

3.1. MONTAŻ

Obudowa modułu ADA- DIOC40 jest przystosowana do montażu na listwie TS-35 (DIN35). W celu zamontowania na listwie należy moduł górną częścią obudowy zawiesić zaczepami na listwie TS-35 następnie docisnąć do listwy dolną część obudowy aż do usłyszenia charakterystycznego dźwięku "klik" gdy dolny zaczep zaczepi obudowę na listwie.

3.2. PODŁĄCZENIE DO KOMPUTERA

W celu podłączenia modułu ADA-DIOC40 do portu RS232 lub USB komputera należy zaopatrzyć się w dodatkowy konwerter np. RS232 na RS485 ADA-I1040 lub USB na RS485 ADA-I9140, który podłączamy do portu RS485 ADA-DIOC40. Sposób podłączenia ADA-DIOC40 do komputera PC przedstawiono na poniższych rysunkach.

Ko	omputer PC)	ADA-	·I1040		ADA-D	IOC40
	Złącze RS232 DB-9M/DTE		Złącze RS232 DB-9F/DCE	Złącze śrubowe RS485 / RS422	RS485(4W) 9600Bd/8/N/1	Złącze śrubowe RS485 / RS422	Złącze śrubowe WE/WY
	(2) Rx		Tx (2)	Tx+/ A		Tx+ / A	DI+
	(3) Tx		Rx (3)	Tx-/ B		Tx-/B	DI-
	(5) GND		GND (5)	Rx+	$\bullet \longrightarrow$	Rx+	NC
				Rx-	$\bullet \qquad \bullet \qquad \bullet$	Rx-	DO+
				GND			DO-

Rys 3. Podłączenie 4-przewodowe ADA-DIOC40 do komputera PC za pomocą konwertera RS232 na RS485/RS422 ADA-I1040

Rys 4a. Podłączenie 4-przewodowe ADA-DIOC40 do komputera PC za pomocą konwertera USB na RS485/RS422 ADA-I9140

3.3. PODŁĄCZENIE DO MAGISTRALI RS485/RS422

Interfejs RS485/RS422 w module ADA-DIOC40 dostępny jest na listwie z zaciskami śrubowymi opisanymi następująco: Tx+/A, Tx-/B, Rx+, Rx-. Poniżej przedstawiono sposób podłączenia modułu ADA-DIOC40 do magistrali RS485(4W) i RS485(2W).

3.3.1. PODŁĄCZENIE DO MAGISTRALI RS485(4W)

Rys 5. Przykładowe podłączenie ADA-DIOC40 do magistrali RS485(4W) 4-przewodowej

3.3.2. PODŁĄCZENIE DO MAGISTRALI RS485(2W)

Rys 6. Przykładowe podłączenie ADA-DIOC40 do magistrali RS485(2W) 2-przewodowej

3.3.3. ŁĄCZENIE ZACISKÓW GND

Łączenie zacisków GND interfejsów RS485/RS422 urządzeń podłączonych do magistrali RS485/RS422 należy wykonać w przypadku różnicy potencjałów mas interfejsów RS485/RS422, która uniemożliwia prawidłową transmisję danych. Nie można podłączać do zacisku GND ekranów kabli, obwodu PE instalacji elektrycznej, mas innych urządzeń.

3.3.4. PODŁĄCZENIE REZYSTANCJI KOŃCOWEJ Rt

Zastosowanie rezystancji końcowej Rt = 120 Ω pozwala na zmniejszenie wpływu odbić w liniach długich i przy dużej szybkości transmisji. Dla prędkości poniżej 9600 bps rezystor nie jest potrzebny. Dla odległości powyżej 1000m i 9600 bps lub 700m i 19200 bps rezystor może być niezbędny jeżeli wystąpią problemy z poprawnością transmisji. Przykładowe podłączania rezystora przedstawiono na rysunkach 5 i 6. Rezystor Rt = 120 Ω , 5%, 0,25W w ilości 2 szt. jest w komplecie z urządzeniem ADA-DIOC40.

3.4. PODŁĄCZENIE OBWODÓW DO WEJŚCIA I WYJŚCIA CYFROWEGO

Wejście i wyjście cyfrowe w module ADA-DIOC40 dostępne jest na listwie z zaciskami śrubowymi opisanymi następująco: -wejście cyfrowe DI+ , DI-; -wyjście cyfrowe DO+, DO-.

Poniżej przedstawiono sposób podłączenia obwodów do wejścia i wyjścia cyfrowego modułu ADA-DIOC40.

Rys 7. Przykładowe podłączenie obwodów do wejścia i wyjścia do ADA-DIOC40

3.4.1. PODŁĄCZENIE FOTOKOMÓRKI QS18VP6LPQ DO WEJŚCIA CYFROWEGO

W celu monitorowania zmian stanu wyjścia fotokomórki serii QS18VP6LPQ podłączamy fotokomórkę do wejścia cyfrowego modułu ADA-DIOC40 jak na poniższym rysunku. Dodatkowo należy skonfigurować moduł w tryb komunikacji "Sygnalizacja stanu DI" (punkt KONFIGURACJA MODUŁU).

Rys 8. Przykładowe podłączenie fotokomórki QS18VP6LPQ do wejścia modułu ADA-DIOC40

3.5. PODŁĄCZENIE ZASILANIA

W celu podłączenia zasilania do modułu ADA-DIOC40 należy zaopatrzyć się w zasilacz stabilizowany o napięciu wyjściowym 24VDC np. DR-15-24.

Długość kabla zasilającego od zasilacza do urządzenia nie powinna przekroczyć 3 m.

Podłączyć biegun dodatni (+) zasilacza do zacisku V+, a ujemny (-) do V- na listwie zaciskowej modułu.

ADA- DIOC40 posiada zabeźpieczenie przed odwrotnym podłączeniem napięcia zasilającego. Jeżeli po podłączeniu zasilania na panelu frontowym nie świeci się zielona dioda oznaczona jako PWR należy sprawdzić prawidłowość podłączenia zasilania (polaryzację).

4. URUCHOMIENIE

Po poprawnym wykonaniu instalacji według powyższych punktów możemy załączyć zasilanie zasilacza. Przy prawidłowym podłączeniu powinna zaświecić się zielona dioda PWR na froncie modułu. ADA- DIOC40 posiada zabezpieczenie przed odwrotnym podłączeniem napięcia zasilającego. Jeżeli po podłączeniu zasilania na froncie modułu nie świeci się zielona dioda oznaczona jako PWR należy sprawdzić prawidłowość podłączenia zasilania.

4.1. OPIS DIOD SYGNALIZACYJNYCH

LED	LED Opis				
PWR	WR Sygnalizacja obecności zasilania modułu				
	Praca Normalna				
DI	I Sygnalizacja stanu wejścia cyfrowego Czerwona dioda LED świeci – stan 0 Czerwona dioda LED nie świeci – stan 1				
DO	Sygnalizacja stanu wyjścia cyfrowego Żółta dioda LED świeci – stan 0 Żółta dioda LED nie świeci – stan 1				
	Konfiguracja				
dioda obok SW1	Miga z częstotliwością 1 Hz - sygnalizacja trybu konfiguracji (patrz ustawienia mikro przełącznika SW1)				
	Aktualizacja oprogramowania				
dioda obok SW1	oda obok SW1 Miga sygnalizując przepływ danych programu do konwertera.				

4.2. USUWANIE PROBLEMÓW

Problem	Możliwe sposoby rozwiązania problemu
Dioda PWR nie świeci.	Należy sprawdzić polaryzację podłączonego zasilania i jego parametry.
Dioda DI świeci ciągle.	Sprawdzić ciągłość obwodu podłączonego do wejścia DI. Możliwe uszkodzenie wejścia.
Dioda DO nie świeci a wyjście nie wykonuje sterowania	Sprawdzić ciągłość obwodu podłączonego do wyjścia DO. Możliwe uszkodzenie wyjścia.

5. KONFIGURACJA MODUŁU

5.1. TRYBY PRACY MODUŁU

Moduł ADA-DIOC40 może pracować w kilku trybach pracy:

- praca normalna
- konfiguracja,
- ustawienia producenta
- awaryjna wymiany oprogramowania (firmwear'u),

które ustawiamy przełącznikiem SW1 umieszczonym obok złącz śrubowych oznaczonych RS2. W celu przestawienia sekcji przełącznika SW1 należy zdjąć pokrywkę złącz z napisem SW1 i małym, płaskim wkrętakiem dokonać odpowiednich przestawień.

Wszystkie ustawienia przełącznika SW1 służące do zmiany trybów pracy ADA-DIOC40 przedstawione są w tabeli poniżej .

Tryby pracy modułu

SW1- 1	SW1- 2	Tryb pracy		
OFF	OFF	Praca normalna		
ON	OFF	Konfiguracja urządzenia		
OFF	ON	Ustawienia producenta Przy tym ustawieniu wyłączenie i ponowne załączenie zasilania modułu powoduje ustawienie konfiguracji producenta.		
ON	ON	Tryb awaryjnej wymiany oprogramowania		

5.2. KONFIGURACJA APLIKACJĄ ADACONFIG

Konfigurację modułu ADA-DIOC40 należy wykonać za pomocą programu *ADAConfig* dostarczonego razem z zakupionym urządzeniem. W celu skonfigurowania ADA-DIOC40 należy go uprzednio podłączyć do komputera (patrz pkt. PODŁĄCZENIE DO KOMPUTERA) i zasilacza. Po załączeniu zasilacza należy sprawdzić, czy na frontowym panelu świeci zielona dioda oznaczona jako PWR. Jeżeli dioda nie świeci, należy sprawdzić polaryzację zasilania podłączonego do ADA-DIOC40. Jeżeli dioda świeci, należy ustawić sekcję mikro przełącznika SW1 do pracy w trybie konfiguracji jak w tabeli poniżej.

SW1-1	SW1-2
ON	OFF

Wejście w tryb konfiguracji powoduje zapalanie żółtej diody LED umieszczonej obok mikro przełącznika SW1 z częstotliwością 1 Hz. Po uruchomieniu programu *ADAConfig* można przeprowadzić konfigurację parametrów transmisji dla interfejsu RS485 modułu oraz ustawić jego adres widziany na magistrali RS485-MODBUS. W pierwszej kolejności należy ustawić w programie *ADAConfig* numer portu COM służącego do komunikacji z modułem. Następnie powinniśmy odczytać konfigurację zapisaną w pamięci ADA-DIOC40 naciskając przycisk <u>Odczytaj konfigurację z konwertera</u>. Po odczytaniu konfiguracji można dokonać odpowiednich zmian w ustawieniach interfejsu.

Konwertera				Wersja CPU Wesja	programu	
-DIOC40 - Moduł izolow	anych wejść wyjść z M	ODBUS-RTU		002.000	000.009 Wymień	op <u>r</u> ogramowa
figuracja konwertera dresowanie konwertera ☑ Dostępny	Adres : T	yb komunikacji Iodhus v			CEL-	MAR
MODBUS-RTU (RS485/F Prędkość transmisji : 9 Liczba bitów danych : 8 Kontrola parzystości : 8 Bity stopu : 1 Odstęp między amkami w znakach : 9 Sterowanie przepływen ORTS/DE - Wyłączu ORTS/DE - Przełącz ORTS/DE - Załączo	RS422) 600 bps V Rrak V Bł Arak Bł Arak V A A A A A A A A A A A A A	ędy ramki : ędy parzystości :			<u>∠akład Informat</u>	yki i Elektronik
O <u>d</u> czytaj konfiguracje	ę z konwertera	Z <u>a</u> pisz konfigurację o	lo konwertera	Odczytaj liczniki bł	ędów <u>K</u> asuj lic	czniki błędów
gnostyka : Odczytano konfigurację : Odczyt konfiguracji.	e konwertera.			<u>W</u> yczyść diagnostykę	Port COM COM9 [USB	Serial Port (C

Rys 9. Widok programu ADAConfig

5.2.1. KONFIGURACJA TRYBU ADRESOWANIA

Dla modułu ADA-DIOC40 tryb adresowania jest na stałe załączony, należy więc ustawić odpowiedni adres modułu z zakresu od 1 -247.

5.2.2. KONFIGURACJA PRĘDKOŚCI TRANSMISJI I FORMATU DANYCH

Interfejs komunikacyjny RS485 modułu możemy skonfigurować na następujące parametry transmisji:

a/ prędkość transmisji (kbps): 0.3, 0.6, 1.2, 1.8, 2.4, 4.8, 7.2, 9.6, 14.4, 19.2, 28.8, 38.4, 57.6, 76.8, 115.2, 230.4,

b/ liczba bitów danych : 5, 6, 7, 8,
c/ kontrola parzystości : brak, kontrola parzystości, kontrola nieparzystości,

d/ liczba bitów stopu : 1, 2,

e/ odstęp między ramkami w znakach od 4 do 255 (czas ciszy interpretowany jako koniec ramki) dla interfejsu RS485/RS422.

5.2.3. KONFIGURACJA STEROWANIA PRZEPŁYWEM DANYCH

W opcji Sterowanie przepływem danych dla interfejsu RS485/RS422 możemy ustawić :

- sygnał DE-OFF stale wyłaczony w tym przypadku interfejs RS485/RS422 pracuje tylko w trybie odbierania danych,

- sygnał DE-TOG przełączany w tym przypadku interfejs RS485 pracuje w trybie odbierania i nadawania danych dla magistrali RS485 2-przewodowej i 4-przewodowej,

- sygnał DE-ON na stale załączony w tym przypadku interfejs RS485/RS422 pracuje w trybie RS422.

Aktualnie zmiana zablokowana.

5.2.4. KONFIGURACJA TRYBU KOMUNIKACJI MODUŁU W TRYBIE PRACY (RUN)

W trybie pracy (RUN) moduł może komunikować się z urządzeniami nadrzędnymi w następujących trybach komunikacji: a/Sygnalizacji stanu DI - moduł po każdej zmianie stanu wejścia wysyła ramkę informującą o tym urządzenie nadrzędne, b/Modbus - moduł pracuje jak urządzenie typu Modbus SLAVE

c/Sygnalizacja stanu DI i Modbus - moduł pracuje w dwóch poprzednich trybach jednocześnie, wymaga to podłączenia

4-przewodowej magistrali RS485 od modułu do urządzenia nadrzędnego.

Tryb komunikacji wybieramy w polu Tryb komunikacji , więcej informacji w punkcie TRYBY KOMUNIKACJI MODUŁU.

Po dokonaniu zmian konfiguracji należy ją zapisać do pamięci modułu naciskając przycisk Zapisz konfigurację do konwertera. Powrót do pracy normalnej następuje po ustawieniu sekcji mikro przełącznika SW1 jak w tabeli poniżej.

SW1-1	SW1-2
OFF	OFF

Powrót do pracy normalnej powoduje wygaszenie żółtej diody LED.

5.3. WYMIANA PROGRAMU

W celu wymiany oprogramowania (firmware) musimy ADA-DIOC40 przełączyć w tryb konfiguracji, ustawiając sekcje mikro przełącznika SW1 jak w tabeli poniżej.

SW1-1	SW1-2
ON	OFF

Wejście w tryb konfiguracji powoduje zapalanie żółtej diody LED umieszczonej obok mikro przełącznika SW1 z częstotliwością 1 Hz. Następnie za pomocą polecenia <u>Wymień program</u> dokonujemy wymiany dostarczonego przez producenta programu. Naciśnięcie tego przycisku powoduje otwarcie okna jak na rysunku poniżej, w którym wskazujemy lokalizację pliku z rozszerzeniem *.bin. Po podświetleniu pliku programu i naciśnięciu przycisku <u>Otwórz</u> następuje załadowanie programu do bufora *ADAConfig* i jego sprawdzenie. Jeśli program *ADAConfig* nie wykryje błędów w załadowanym pliku możemy przystąpić do wymiany oprogramowania modułu. Proces wymiany programu wizualizowany jest przez *ADAConfig* za pomocą paska postępu i po udanej wymianie potwierdzany odpowiednim komunikatem.

					>
v v	ð Pr	zeszukaj: FW			٩
			•••		?
DIOC40_v9.binc.bin	(✓ Plik bin	(*.bin)		~
	/ ~	v ~ O Pr	V v O Przeszukaj: FW	V v び Przeszukaj: FW 際語 マ	V V D Przeszukaj: FW

Rys 10. Wybór pliku z programem obsługi (firmware)

Podczas ładowania programu żółta dioda LED umieszczona obok mikro przełącznika SW1 miga pokazując przepływ danych do ADA-DIOC40. Jeżeli program został załadowany poprawnie żółta dioda LED zacznie ponownie migać z częstotliwością 1 Hz. Po udanej wymianie można powrócić do pracy normalnej ustawiając sekcję mikro przełącznika SW1 jak w poniższej tabeli.

SW1-1	SW1-2
OFF	OFF

Powrót do pracy normalnej powoduje wygaszenie żółtej diody LED umieszczonej obok mikro przełącznika SW1.

5.4. AWARYJNA WYMIANA PROGRAMU

W przypadku nieudanej wymiany programu modułu należy spróbować wymienić go ponownie według opisu zawartego w punkcie WYMIANA PROGRAMU. Jeśli jednak operacja się nie powiedzie należy wówczas skorzystać z możliwości awaryjnej wymiany oprogramowania. Wejścia w ten tryb dokonujemy ustawiając sekcję mikro przełącznika SW1 jak w tabeli poniżej.

SW1-1	SW1-2
ON	ON

Po takim ustawieniu sekcji mikro przełącznika należy wykonać restart modułu. Można tego dokonać przez wyłączenie i ponowne załączenie zasilania ADA-DIOC40. Po tej czynności moduł powinien się znajdować w trybie awaryjnej wymiany oprogramowania, w którym żółta dioda LED umieszczona obok mikro przełącznika SW1 świeci światłem ciągłym. Teraz należy dokonać wymiany programu w sposób opisany w punkcie WYMIANA PROGRAMU. Po udanej wymianie programu należy ustawić sekcję mikro przełącznika SW1 jak w tabeli poniżej.

SW1-1	SW1-2
OFF	OFF

Powrót do pracy normalnej powoduje wygaszenie żółtej diody LED umieszczonej obok mikro przełącznika SW1.

5.5. USTAWIANIA PRODUCENTA

W przypadku problemów z pracą modułu ADA-DIOC40 :

- braku komunikacji w trybie konfiguracji,

- błędów transmisji na magistrali RS485/RS422,

można dokonać przywrócenia ustawień producenta wewnętrznych rejestrów modułu.

Ustawienia producenta

Parametr	Interfejs RS485/RS422	
Adresowanie modułu - Dostępne	Załączone	
Adresowanie modułu - Adres	64	
Prędkość transmisji	9600bps	
Liczba bitów danych	8	
Kontrola parzystości	Brak	
Bity stopu	1	
Odstęp między ramkami w znakach	4	
Sterowanie przepływem danych	DE-TOG - Przełączany	
Komunikacja w trybie RUN	Modbus	

W celu przywrócenia ustawień producenta należy ustawić sekcje przełącznika SW1 jak w tabeli poniżej.

SW1-1	SW1-2
OFF	ON

Następnie wyłączyć i po chwili ponowne załączyć zasilanie modułu. Po wykonaniu tej czynności do rejestrów wewnętrznych modułu zostaną załadowane ustawienia producenta.

Powrót do pracy normalnej ustawiając sekcję mikro przełącznika SW1 jak w poniższej tabeli.

SW1-1	SW1-2
OFF	OFF

Powrót do pracy normalnej powoduje wygaszenie żółtej diody LED umieszczonej obok mikro przełącznika SW1.

5.6. DIAGNOSTYKA TRANSMISJI DANYCH

W celu odczytania diagnostyk należy ustawić sekcje mikro przełącznika SW1 do pracy w trybie konfiguracji (patrz pkt. TRYBY PRACY MODUŁU).

Poprawność transmisji przebiegającej po interfejsie RS485 można sprawdzić odczytując liczniki błędów programem *ADAConfig* z pamięci modułu. Licznik błędnych ramek będzie zwiększany np. w przypadku źle ustawionej prędkości w stosunku do rzeczywistej prędkości przesyłanych danych. Natomiast licznik błędów parzystości będzie liczył błędy mogące powstać w przypadku przekłamania bitów w transmitowanym znaku. Licznik ten nie działa przy wyłączonej kontroli parzystości.

W celu odczytania wymienionych liczników naciskamy przycisk <u>Odczytaj liczniki błędów</u>. Kasowania liczników dokonujemy używając przycisku <u>Kasuj liczniki błędów</u> co spowoduje wyzerowanie liczników w pamięci modułu.

W przypadku pojawiania się błędów parzystości lub błędów ramki należy sprawdzić ustawienia konfiguracyjne ADA-DIOC40 oraz poprawność połączenia magistrali RS485 do portu RS485/RS422 modułu.

Po zakończeniu diagnostyki musimy ustawić sekcje mikro przełącznika SW1 w tryb pracy normalnej (patrz pkt. TRYBY PRACY MODUŁU).

6. TRYBY KOMUNIKACJI MODUŁU

Moduł może pracować w jednym z trzech trybów komunikacji:

a/**Sygnalizacji stanu DI** – moduł po każdej zmianie stanu wejścia wysyła ramkę informującą o tym urządzenie nadrzędne, b/**Modbus** – moduł pracuje jak urządzenie typu Modbus SLAVE,

c/**Sygnalizacja stanu DI i Modbus** – moduł pracuje w dwóch poprzednich trybach jednocześnie, wymaga to podłączenia 4przewodowej magistrali RS485 od modułu do urządzenia nadrzędnego.

6.1. TRYB SYGNALIZACJI ZMIANY STANU WEJŚCIA CYFROWEGO

W trybie **Sygnalizacji stanu DI** – moduł po każdej zmianie stanu wejścia wysyła ramkę informującą o tym urządzenie nadrzędne, rodzaje wysyłanych ramek opisano poniżej.

Gdy nastąpi zmiana zmiana stanu wejścia z 0 na 1 moduł wyśle ramkę do systemu sterowania w postaci ciągu bajtów [HEX] 40 64 02 01 00 9A AF

gdzie:

0x40 - adres modułu 0x64 - funkcja sygnalizacji zmiany stanu wejścia

0x02 - liczba baitów danych

0x01 - dane1 : aktualny stan wejścia

0x00 - dane2 : poprzedni stan wejścia

0x9A - suma kontrolna CRC16 -Low

0xAF - suma kontrolna CRC16 -Hi

Gdy nastąpi zmiana stanu wejścia z 1 na 0 moduł wyśle ramkę do systemu sterowania w postaci ciągu bajtów [HEX] 40 64 02 00 01 5A FF

gdzie:

0x40 - adres modułu 0x64 - funkcja sygnalizacji zmiany stanu wejścia

0x02 - liczba bajtów danych

0x00 - dane1: aktualny stan wejścia

0x01 - dane2: poprzedni stan wejścia

0x5A - suma kontrolna CRC16 -Low

0xFF - suma kontrolna CRC16 -Hi

Suma kontrolna CRC16 liczona jest od pierwszego bajtu (0x40) do ostatniego bajtu danych dane2 (razem z tym bajtem). Wielomian generujący CRC16 (MODBUS) = 0xA001

6.2. TRYB KOMUNIKACJI MODBUS-RTU

6.2.1. TABELA ADRESÓW MODBUS

6.2.1.1. STAN WYJŚCIA BINARNEGO FUNKCJA 0x01 [0X-REFERENCES]

Moduł posiada 1 wyjścia binarne typu OC oznaczone jako DO.

Adres Rejestru	Adres Modbus	Opis	Atr	Funkcja
00001	0	Stan wyjścia	R/W	01/05

6.2.1.2. STAN WEJŚCIA BINARNEGO FUNKCJA 0x02 [1X-REFERENCES]

Moduł posiada 1 wejścia binarne oznaczone jako DI.

Adres Rejestru	Adres Modbus	Opis	Atr	Funkcja
10001	0	Stan wejścia	R	02

6.2.1.3. REJESTRY PAMIĘTAJĄCE (HOLDING REGISTERS) ODCZYTYWANE FUNKCJĄ 03 [4X – REFERENCES]

Adres Rejestru	Adres Modbus	Opis		Funkcja
40001	0	Stan wyjścia	R/W	03/06
40002	1	Stan wejścia	R	03
40003	2	Licznik zmiany stanu wejścia z 0 na 1 MSB		03/06
40004	3	Licznik zmiany stanu wejścia z 0 na 1 LSB		03/06
40005	4	Licznik zmiany stanu wejścia z 1 na 0 MSB		03/06
40006	5	Licznik zmiany stanu wejścia z 1 na 0 LSB		03/06
40007	7	Pusty	R/W	03/06

6.2.2. BUDOWA RAMKI PROTOKOŁU MODBUS

Adres urządzenia	Funkcja	Dane	CRC-16Lo	CRC-16Hi
------------------	---------	------	----------	----------

6.2.3. FUNKCJE PROTOKOŁU MODBUS

Kod Funkcji	Opis	Obsługiwana
01 (0x01)	Odczyt stanu wyjścia binarnego	TAK
02 (0x02)	Odczyt stanu wejścia binarnego	TAK
03 (0x03)	Odczyt rejestrów pamiętających HOLDING REG.	TAK
05 (0x05)	Zmiana stanu pojedynczego wyjścia	TAK
06 (0x06)	Zmiana wartości pojedynczego rejestru HR	TAK

6.2.3.1. FUNKCJA 0x01 - ODCZYT STANU WYJŚCIA BINARNEGO

Funkcja 0x01 służy do odczytu stanu (ON / OFF) wyjścia binarnego. Stan każdego wyjścia binarnego jest reprezentowany jednym bitem, stan:

0-oznacza, że wyjście binarne jest w stanie OFF-wyłaczone 1-oznacza że wyjście binarne jest w stanie ON-załaczone

Rejestr stanu wyjścia binarnego jest 16-bitowy

Zapytanie

Nr.Bajtu	Oznaczenie	Rozmiar	Wartość
00	Adres modułu	1-Bajt	0x01 [1 do 247]
01	Kod funkcji	1-Bajt	0x01
02	Adres wyjścia Hi	1-Bajt	0x00
03	Adres wyjścia Lo	1-Bajt	0x00
04	Liczba wyjść Hi	1-Bajt	0x00
05	Liczba wyjść Lo	1-Bajt	0x01
06	CRC-Lo	1-Bajt	
07	CRC-Hi	1-Bajt	

Przykład. Odczyt stanu wyjścia 1 (adres x00001 do x00001) 01-01-00-00-00-01-CRCLo-CRCHi

<u>Odpowiedź</u>

Nr.Bajtu	Oznacz	Rozmiar	Wartość
00	Adres modułu	1 Bajt	0x01 [1 do 247]
01	Kod funkcji	1 Bajt	0x01
02	Liczba bajtów danych	1 Bajt	0x01
03	Dane-1	1 Bajt	0x01
04	CRC-Lo	1 Bajt	
05	CRC-Hi	1 Bajt	

Przykład. Odczyt stanu wyjścia 1 (adres x00001 do x0001) wyjście w stanie ON. 01-01-01-CRCLo-CRCHi

W odpowiedzi stan wyjścia 1 przedstawiony jako bajt o wartości 0x01 jest to równe 0000 0001 binarnie.

Nr.Bajtu	Oznacz	Rozmiar	Wartość
00	Adres modułu	1-Bajt	0x01 [1 do 247]
01	Kod funkcji	1-Bajt	0x81
02	Kod błędu	1-Bajt	0x01-nieznana funkcja 0x02-nieznany adres danych 0x03-nieznana wartość danych 0x04-wystąpił nieznany błąd podczas przetwarzania zapytania
03	CRC-Lo	1-Bajt	
04	CRC-Hi	1-Bajt	

Odpowiedź - w wypadku wystąpienia błędu

6.2.3.2. FUNKCJA 0x02 - ODCZYT STANU WEJŚCIA BINARNEGO

Funkcja 0x02 służy do odczytu stanu (ON / OFF) wejścia binarnego. Stan każdego wejścia binarnego jest reprezentowany jednym bitem stan:

0-oznacza, że wejście binarne jest w stanie OFF-wyłaczone 1-oznacza że wejście binarne jest w stanie ON-załaczone

Rejestr stanu wejścia binarnego jest 16-bitowy

Zapytanie

Nr.Bajtu	Oznaczenie	Rozmiar	Wartość
00	Adres modułu	1-Bajt	0x01 [1 do 247]
01	Kod funkcji	1-Bajt	0x02
02	Adres wejścia Hi	1-Bajt	0x00
03	Adres wejścia Lo	1-Bajt	0x00
04	Liczba wejść Hi	1-Bajt	0x00
05	Liczba wejść Lo	1-Bajt	0x01
06	CRC-Lo	1-Bajt	
07	CRC-Hi	1-Bajt	

Przykład. Odczyt stanu wejścia 1 (adres x10001 do x10001) 01-02-00-00-00-01-CRCLo-CRCHi

Odpowiedź

Nr.Bajtu	Oznacz	Rozmiar	Wartość
00	Adres modułu	1 Bajt	0x01 [1 do 247]
01	Kod funkcji	1 Bajt	0x02
02	Liczba bajtów danych	1 Bajt	0x01 [zależne od zapytania]
03	Dane-1	1 Bajt	0x01
04	CRC-Lo	1 Bajt	
05	CRC-Hi	1 Bajt	

Przykład. Odczyt stanu wejścia 1 (adres x10001 do x10001) stan wejścia ON. 01-02-01-01-CRCLo-CRCHi

W odpowiedzi stan wejścia 1 jest przedstawiony jako bajt o wartości 0x01 jest to równe 0000 0001 binarnie.

Nr.Bajtu	Oznacz	Rozmiar	Wartość
00	Adres konwertera	1-Bajt	0x01 [1 do 247]
01	Kod funkcji	1-Bajt	0x82
02	Kod błędu	1-Bajt	0x01-nieznana funkcja 0x02-nieznany adres danych 0x03-nieznana wartość danych 0x04-wystąpił nieznany błąd podczas przetwarzania zapytania
03	CRC-Lo	1-Bajt	
04	CRC-Hi	1-Bajt	

Odpowiedź - w wypadku wystąpienia błędu

6.2.3.3. FUNKCJA 0x03 – ODCZYT WARTOŚCI REJESTRU PAMIĘTAJĄCEGO (HOLDING REGISTER)

Funkcja 0x03 służy do odczytu 16 bitowego rejestru pamiętającego (Holding Register).

<u>Lapytanie</u>							
Nr.Bajtu	Oznaczenie	Rozmiar	Wartość				
00	Adres modułu	1 Bajt	0x01 [1 do 247]				
01	Kod funkcji	1 Bajt	0x03				
02	Adres rejestru Hi	1 Bajt	0x00				
03	Adres rejestru Lo	1 Bajt	0x00				
04	Liczba rejestrów Hi	1 Bajt	0x00				
05	Liczba rejestrów Lo	1 Bajt	0x02				
06	CRC-Lo	1 Bajt					
07	CRC-Hi	1Bajt					

Przykład. Odczyt stanu wyjścia i wejścia (adres 40001 do 40002) 01-03-00-00-00-02-CRCLo-CRCHi

<u>Odpowiedź</u>

Nr.Bajtu	Oznacz	Rozmiar	Wartość
00	Adres modułu	1-Bajt	0x01 [1 do 247]
01	Kod funkcji	1-Bajt	0x03
02	Liczba bajtów danych	N-Bajt	0x04 [zależne od zapytania (4)]
03	Dane1-Hi	1-Bajt	0x00
04	Dane1-Lo	1-Bajt	0x01
05	Dane2-Hi	1-Bajt	0x00
06	Dane2-Lo	1-Bajt	0x01
07	CRC-Lo	1-Bajt	
08	CRC-Hi	1-Bajt	

Przykład. Odczyt stanu wyjścia i wejścia (adres 40001 do 40002) 01-03-04-00-01-00-01-CRCLo-CRCHi

W odpowiedzi stan wyjścia 1 i wejścia 1przedstawiony jako 4-bajty o wartościach: 00-01-00-01

Odpowiedź - w wypadku wystąpienia błędu

Nr.Bajtu	Oznacz	Rozmiar	Wartość
00	Adres modułu	1-Bajt	0x01 [1 do 247]
01	Kod funkcji	1-Bajt	0x83
02	Kod błędu	1-Bajt	0x01-nieznana funkcja 0x02-nieznany adres danych 0x03-nieznana wartość danych 0x04-wystąpił nieznany błąd podczas przetwarzania zapytania
03	CRC-Lo	1-Bajt	
04	CRC-Hi	1-Bajt	

6.2.3.4. FUNKCJA 0x05 – ZMIANA STANU POJEDYNCZEGO WYJŚCIA

Funkcja 0x05 służy do zmiany stanu pojedynczego wyjścia.

Zapytanie

Nr.Bajtu	Oznaczenie	Rozmiar	Wartość
00	Adres modułu	1 Bajt	0x01 [1 do 247]
01	Kod funkcji	1 Bajt	0x05
02	Adres wyjścia Hi	1 Bajt	0x00
03	Adres wyjścia Lo	1 Bajt	0x00
04	Rozkaz Hi	1 Bajt	0x00 0xFF
05	Rozkaz Lo	1 Bajt	0x00 0x00
06	CRC-Lo	1 Bajt	
07	CRC-Hi	1Bajt	

Przykład. Wyłączenie wyjścia o adresie 0x00 01-05-00-00-00-00-CRCLo-CRCHi

Przykład. Załączenie wyjścia o adresie 0x00 01-05-00-00-FF-00-CRCLo-CRCHi

Odpowiedź

Nr.Bajtu	Oznaczenie	Rozmiar	Wartość				
00	Adres modułu	1-Bajt	0x01 [1 do 247]				
01	Kod funkcji	1-Bajt	0x05				
02	Adres wyjścia Hi	1-Bajt	0x00				
03	Adres wyjścia Lo	1-Bajt	0x00				
04	Rozkaz Hi	1-Bajt	0x00 0xFF				
05	Rozkaz Lo	1-Bajt	0x00 0x00				

Nr.Bajtu	Oznaczenie	Rozmiar	Wartość
06	CRC-Lo	1-Bajt	
07	CRC-Hi	1-Bajt	

Przykład. Potwierdzenie wyłączenia wyjścia o adresie 0 01-05-00-00-00-00-CRCLo-CRCHi

Przykład. Potwierdzenie załączenia wyjścia o adresie 0 01-05-00-00-FF-00-CRCLo-CRCHi

Odpowiedź - w wypadku wystąpienia błędu

Nr.Bajtu	Oznacz	Rozmiar	Wartość
00	Adres modułu	1-Bajt	0x01 [1 do 247]
01	Kod funkcji	1-Bajt	0x85
02	Kod błędu	1-Bajt	0x01-nieznana funkcja 0x02-nieznany adres danych 0x03-nieznana wartość danych 0x04-wystąpił nieznany błąd podczas przetwarzania zapytania
03	CRC-Lo	1-Bajt	
04	CRC-Hi	1-Bajt	

6.2.3.5. FUNKCJA 0x06 – ZMIANA WARTOŚCI POJEDYNCZEGO REJESTRU PAMIĘTAJĄCEGO (HOLDING REGISTER)

Funkcja 0x06 służy do zmiany wartości pojedynczego rejestru.

Zapytanie

Nr.Bajtu	Oznaczenie	Rozmiar	Wartość
00	Adres modułu	1 Bajt	0x01 [1 do 247]
01	Kod funkcji	1 Bajt	0x06
02	Adres rejestru Hi	1 Bajt	0x00
03	Adres rejestru Lo	1 Bajt	0x02
04	Wartość rejestru Hi	1 Bajt	0x00
05	Wartość rejestru Lo	1 Bajt	0x01
06	CRC-Lo	1 Bajt	
07	CRC-Hi	1Bajt	

Przykład. Zapis wartości 0x01 do rejestru o adresie 0x02 (40003). 01-05-00-02-00-01-CRCLo-CRCHi

<u>Odpowiedź</u>

Nr.Bajtu	Oznaczenie	Rozmiar	Wartość
00	Adres modułu	1 Bajt	0x01 [1 do 247]
01	Kod funkcji	1 Bajt	0x06
02	Adres rejestru Hi	1 Bajt	0x00
03	Adres rejestru Lo	1 Bajt	0x02
04	Wartość rejestru Hi	1 Bajt	0x00
05	Wartość rejestru Lo	1 Bajt	0x01
06	CRC-Lo	1 Bajt	
07	CRC-Hi	1Bajt	

Przykład. Potwierdzenie zapisania wartości 0x01 do rejestru o adresie 0x02 (40003). 01-05-00-02-00-01-CRCLo-CRCHi

Odpowiedź - w wypadku wystąpienia błędu

Nr.Bajtu	Oznacz	Rozmiar	Wartość
00	Adres modułu	1-Bajt	0x01 [1 do 247]
01	Kod funkcji	1-Bajt	0x85

Nr.Bajtu	Oznacz	Rozmiar	Wartość
02	Kod błędu	1-Bajt	0x01-nieznana funkcja 0x02-nieznany adres danych 0x03-nieznana wartość danych 0x04-wystąpił nieznany błąd podczas przetwarzania zapytania
03	CRC-Lo	1-Bajt	
04	CRC-Hi	1-Bajt	

6.2.4. SUMA KONTROLNA CRC

Suma kontrolna CRC-16-MODBUS ramek liczona jest dla wszystkich bajtów ramki.

6.3. TRYB KOMUNIKACJI SYGNALIZACJI ZMIANY STANU WEJŚCIA CYFROWEGO I MODBUS

W trybie komunikacji **Sygnalizacja stanu DI i Modbus** – moduł pracuje jak w dwóch poprzednich trybach jednocześnie, wymaga to podłączenia 4-przewodowej magistrali RS485 od modułu do urządzenia nadrzędnego.

7. WERSJE WYKONANIA

	ADA-DIOC40 -		-	
Wersja:				
Standardowa		1		
Izolacja galwaniczna:				
Izolacja galwaniczna trójdrożna 1kVDC				23
Izolacja galwaniczna trójdrożna 3kVDC	:			33

Przykład zamówienia: Symbol produktu: **ADA-DIOC40-1-23 1** – wersja standardowa, **23** – izolacja galwaniczna trójdrożna 1kVDC,

8. DANE TECHNICZNE

DANE TECHNICZNE			
	Parametry Transmisji		
Interfejs	RS485/RS422		
Złącze	Złącze śrubowe – maks. Ø 2,5mm ² .		
Długość magistrali	Do 1200 m		
Maksymalna liczba podłączonych urządzeń	Do 32		
Wspierane prędkości transmisji danych (bps)	300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400,		
Wspierane formaty danych	Liczba bitów danych: 5, 6, 7, 8, Kontrola parzystości : Brak, Parzystość, Nieparzystość, Liczba bitów stopu : 1, 2.		
Linia transmisyjna	Kabel skrętkowy 1-parowy lub 2-parowy, UTP Nx2x0,5(24AWG), ekranowany w środowisku o dużych zakłóceniach (STP Nx2x0,5(24AWG)).		
Typ transmisji	Asynchroniczna full duplex lub half duplex.		
Zgodność ze Standardami	EIA-485, CCITT V.11		
Sygnalizacja optyczna	 zielona dioda PWR zasilanie, czerwona dioda DI stan wejścia, żółta dioda DO stan wyjścia. 		
Protokół komunikacyjny	MODBUS-RTU		
	Parametry wejścia cyfrowego		
Liczba wejść	1		
Zakres napięcia wejściowego	0 – 30V DC		
Stan niski "0"	0 – 5,5V DC		
Stan wysoki "1"	6,5 – 30V DC		
Rezystancja wejściowa	3kΩ		
Izolacja optyczna	3kV DC		
Typ wejścia	Izolowane transoptorowe		
Parametry wyjścia cyfrowego			

llość wyjść	1	
Maksymalny prąd i napięcie	20mA DC / 30V DC	
Izolacja optyczna	3kV DC	
Typ wyjścia	OC – Open Colector (PNP)	
	Parametry Elektryczne	
Napięcie zasilania	10 - <u>24</u> – 30 V DC	
Kabel zasilający	Zalecana długość przewodu zasilającego – do 3m	
Moc pobierana	<2W	
Zabezpieczenie przed odwrotną polaryzacją zasilania	Tak	
Izolacja galwaniczna	1kVDC lub 3kVDC - pomiędzy obwodem zasilania a torem sygnałowym RS485/RS422. W zależności od wersji wykonania.	
Optoizolacja	~3kV - pomiędzy obwodami wejścia i wyjścia a elektroniką modułu	
Kompatybilność elektromagnetyczna	Odporność na zakłócenia według normy PN-EN 55024. Emisja zakłóceń według normy PN-EN 55022.	
Wymagania bezpieczeństwa	Według normy PN-EN60950.	
Środowisko	Handlowe i lekko uprzemysłowione.	
	Warunki Środowiskowe	
Temperatura otoczenia	-25 ÷ + <u>23</u> ÷ +50°C	
Wilgotność względna powietrza	5 ÷ 95% - bez kondensacji	
Temperatura przechowywania	-40 ÷ +70 °C	
	Obudowa	
Wymiary(Sz x G x Wy)	88mm x 58mm x 90 mm	
Materiał	ABS/PC (samogasnący)	
Stopień ochrony obudowy	IP40	
Stopień ochrony zacisków	IP20	
Masa	0,20 kg	
Wykonanie wg. Standardu	DIN EN50022, DIN EN43880	
Położenie podczas pracy	Dowolne.	
Sposób montażu	Na szynie zgodnej ze standardem DIN35 / TS35.	

Drogi Kliencie,

Dziękujemy za zamówienia produktów Firmy **CEL-MAR**.

Doceniając Państwa działalność mamy nadzieję że ta instrukcja obsługi pomogła w podłączeniu i uruchomieniu zakupionego urządzenia. Pragniemy poinformować również iż jesteśmy producentem: konwerterów i separatorów szeregowej transmisji danych z interfejsami RS232, RS485, RS422, USB, światłowodowe, pętle prądowe, 1-WIRE, ETHERNET, WI-FI, cyfrowych czujników temperatury, wilgotności, ciśnienia, naświetlenia; zasilaczy.

Prosimy o kontakt w celu wyrażenia opinii o produkcie oraz jak możemy zaspokoić Państwa obecne i przyszłe oczekiwania.

	Tel	: +48 41 362-12-46
CEL-MAR sp.j.	Tel/fax	: +48 41 361-07-70
Zakład Informatyki i Elektroniki	Web	:: http://www.cel-mar.pl
ul. Ściegiennego 219C	Biuro	:: <u>biuro@cel-mar.pl</u>
25-116 Kielce, POLSKA	Dział handlowy	: : handlowy@cel-mar.pl
	Informacja techniczna	: <u>serwis@cel-mar.pl</u>