

Instrukcja obsługi

ADA-401WP

Moduł pomiarowy 1-WIRE na MODBUS-RTU

Spis treści

	1
	4 4 1
1.3. OZNACZENIE CE	
1.4. OCHRONA SRODOWISKA	4
1.5. SERWIS I KONSERWACJA	4
1.6. ZAWARTOSC OPAKOWANIA	4
2. INFORMACJE O PRODUKCIE	4
2.1. WŁAŚCIWOŚCI	4
2.2 OPIS	5
2.3 ZASTOSOWANIE	6
	6
	0
	0
	0
3.2. PODŁĄCZENIE DO KOMPUTERA	
3.3. PODŁĄCZENIE DO MAGIŚTRALI RS485 / RS422	
3.3.1. ŁĄCZENIE ZACISKOW GND	7
3.3.2. PODŁĄCZENIE REZYSTANCJI KONCOWEJ RŁ DO MAGISTRALI RS485	7
3.4. PODŁĄCZENIE DO MAGISTRALI 1-WIRE	8
3.4.1. PODŁĄCZENIE CZUJNIKÓW TEMPERATURY	8
3.4.2. OBSŁUGIWANE CZUJNIKI Z INTERFEJSEM 1-WIRE	8
3.4.3. OGRANICZENIA MAGISTRALI 1-WIRE	9
	Q
	00
4.1. STONALIZACIA DLĘDOW FRACT	9 0
5.1. TRYBY PRACY MODULU	
5.2. KONFIGURACJA GŁOWNA MODUŁU	
5.2.1. ALARMY SYSTEMU	
5.2.2. KONFIGURACJA MAGISTRALI RS485	11
5.2.3. KONFIGURACJA MAGISTRALI 1-WIRE	11
5.2.4. KONFIGURACJA POMIARÓW	
5.2.5. KONFIGURACJA AUTOMATYCZNEGO PRZYPISANIA CZUJNIKÓW DO KANAŁÓW POMIAROWYCH	(APC)11
5.3 KONFIGURACIA KANAŁÓW POMIAROWYCH	11
5.3.1 DODAWANIE CZI LINIKÓW	11
5.3.2.2. ZMIANA KOLENNOSCI CZUJNIKOW TEMPERATURY ZA POMOCĄ APC	
5.3.3. USUWANIE CZUJNIKOW	
5.3.4. KONFIGURACJA PARAMETROW KANAŁU POMIAROWEGO	14
5.4. ZAPIS KONFIGURACJI DO PLIKU	
5.5. WYDRUK KONFIGURACJI	
5.6. WYMIANA PROGRAMU	
5.7. AWARYJNA WYMIANA PROGRAMU	
5.8. USTAWIANIE PARAMETRÓW PRODUCENTA	17
6 DIAGNOSTYKA	17
	۱۱ ۱۸
6.1.3. DODATKOWE DIAGNOSTYKI MAGISTRALI 1-WIRE	
6.1.4. DIAGNOSTYKA SYSTEMU.	
6.2. DIAGNOSTYKA KANAŁOW POMIAROWYCH	
6.3. DIAGNOSTYKA PROTOKOŁU MODBUS-RTU	
6.3.1. KONFIGURACJA KOMUNIKACJI MODBUS-RTU	21
6.3.2. MONITOROWANIE MODUŁU - MODBUS-RTU	21
7. IMPLEMENTACJA PROTOKOŁU MODBUS-RTU	21
7.1. TABELA ADRESÓW MODBUS-RTU	
7.1.1. REJESTRY MODBUS KANAŁÓW POMIAROWYCH ODCZYTYWANE FUNKCJA 04 (3X – REFERENCE	ES) INPUT
REGISTERS I LIB FUNKCIA 03 (4X - REFERENCES) HOLDING REGISTERS	22
7.2 BUDOWA RAMKI PROTOKOŁU MODBUS-RTU	
	20 ດາ
	Zى
	Z3
1.3.1.1. FUNRUJA UXUS / UXU4 – UDUZTT WARTUSUTTEMPERATURTZ KANAŁU POMIAROWEGO [48	/ 3A-
7.3.1.2. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOSCI WILGOTNOSCI WZGLĘDNEJ Z KANAŁU POMIAF	KOWEGO [4X /
3X-REFERENCES]	24
7.3.1.3. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOSCI CISNIENIA ATMOSFERYCZNEGO Z KANAŁU POI	MIAROWEGO
[4X / 3X-REFERENCES]	24

7.3.1.4. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI NATĘŻENIA OSWIETLENIA Z KANAŁU POMIAROWEGO [4> 3X-REFERENCES]	</td
7.3.1.5. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI NATĘŻENIA NASŁONECZNIENIA Z KANAŁU POMIAROWEG	23 30
[4X / 3X-REFERENCES]	25
KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]	25
7.3.1.7. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI PROCENTÓW USTAWIONEJ W ZADAJNIKU PROCENTÓW	Z
7.3.1.8. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI KONCENTRACJI CO2 Z KANAŁU POMIAROWEGO [4X / 3X-	25 -
REFERENCES]	25
7.3.1.9. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOSCI TEMPERATURY CZUJNIKA PT100, PT500, PT1000 Z KANAŁ POMIAROWEGO I4X / 3X-REFERENCESI	∠U 25
7.3.1.10. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI NAPIĘCIA 0-10V DC Z KANAŁU POMIAROWEGO [4X / 3X-	20
REFERENCES]	25
7.3.1.11. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOSCI NATĘZENIA PRĄDU 0-20mA DC Z KANAŁU POMIAROWEC [/X / 3X_REFERENCES]	30 25
7.3.2. FUNKCJA 0x03 / 0x04 - ODCZYT NUMERU SERYJNEGO UKŁADU Z KANAŁU POMIAROWEGO [4X / 3X-	20
REFERENCES]	26
7.3.3. FUNKCJA 0x03 / 0x04 - ODCZYT STANU KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]	27

1. INFORMACJE OGÓLNE

Dziękujemy Państwu za zamówienie produktu Firmy **CEL-MAR**. Produkt ten został gruntownie sprawdzony, przetestowany i jest objęty dwuletnią gwarancją na części i działanie od daty sprzedaży.

Jeżeli wynikną jakieś pytania podczas instalacji lub używania tego produktu, prosimy o niezwłoczny kontakt z Informacją Techniczną pod numerem +48 41 362-12-46.

1.1. INFORMACJE GWARANCYJNE

Firma CEL-MAR udziela dwuletniej gwarancji na moduł **ADA-401WP**, liczonej od dnia sprzedaży. Gwarancja nie pokrywa uszkodzeń powstałych z niewłaściwego użytkowania, zużycia lub nieautoryzowanych zmian. Jeżeli produkt nie działa zgodnie z instrukcją, będzie naprawiony pod warunkiem dostarczenia urządzenia do **Firmy CEL-MAR** z opłaconym transportem i ubezpieczeniem.

Firma CEL-MAR pod żadnym warunkiem nie będzie odpowiadać za uszkodzenia wynikłe z niewłaściwego używania produktu czy na skutek przyczyn losowych: wyładowanie atmosferyczne, powódź, pożar itp.

Firma CEL-MAR nie ponosi żadnej odpowiedzialności za powstałe uszkodzenia i straty w tym: utratę zysków, utratę danych, straty pieniężne wynikłe z użytkowania lub niemożności użytkowania tego produktu.

Firma CEL-MAR w specyficznych przypadkach cofnie wszystkie gwarancje, przy braku przestrzegania instrukcji obsługi i nie akceptowania warunków gwarancji przez użytkownika.

1.2. OGÓLNE WARUNKI BEZPIECZNEGO UŻYTKOWANIA

Urządzenie należy montować w miejscu bezpiecznym i stabilnym (np. szafka elektroinstalacyjna), kabel zasilający powinien być tak ułożony, aby nie był narażony na deptanie, zaczepianie lub wyrywanie z obwodu zasilającego.

Nie wolno stawiać urządzenia na mokrej powierzchni.

Nie należy podłączać urządzenia do nieokreślonych źródeł zasilania,

Nie należy uszkadzać lub zgniatać przewodów zasilających.

Nie należy wykonywać podłączeń mokrymi rękami.

Nie wolno przerabiać, otwierać albo dziurawić obudowy urządzenia!

Nie wolno zanurzać urządzenia w wodzie ani żadnym innym płynie.

Nie stawiać na urządzeniu źródeł otwartego ognia: świece, lampki oliwne itp.

Całkowite wyłączenie z sieci zasilającej następuje dopiero po odłączeniu napięcia w obwodzie zasilającym.

Nie należy przeprowadzać montażu lub demontażu urządzenia jeżeli jest włączone. Może to doprowadzić do zwarcia elektrycznego i uszkodzenia urządzenia.

Urządzenie nie może być użyte do zastosowań od których zależy życie i zdrowie ludzkie (np. medyczne).

1.3. OZNACZENIE CE

Symbol CE na urządzeniu firmy CEL-MAR oznacza zgodność urządzenia z dyrektywą kompatybilności elektromagnetycznej **EMC 2014/30/WE** (Electromagnetic Compatibility Directive). Deklaracja zgodności jest dostępna przez kontakt z Serwisem Technicznym pod adresem e-mail: <u>serwis@cel-mar.pl</u> lub telefonicznie pod numerem +48 41 362-12-46.

1.4. OCHRONA ŚRODOWISKA

Znak ten na urządzeniu informuje o zakazie umieszczania zużytego urządzenia łącznie z innymi odpadami. Sprzęt należy przekazać do wyznaczonych punktów zajmujących się utylizacją. (Zgodnie z Ustawą o zużytym sprzęcie elektronicznym z dnia 29 lipca 2005)

1.5. SERWIS I KONSERWACJA

Moduł ADA-401WP nie wymaga okresowej konserwacji. Obsługa techniczna pod numerem: +48 41 362-12-46 w godzinach 8.00-16.00 od poniedziałku do piątku.

1.6. ZAWARTOŚĆ OPAKOWANIA

Moduł dostarczany jest z: instrukcją obsługi, rezystorami terminującymi Rt=120Ω (2 szt), CD-ROM z oprogramowaniem ADAUtil.

2. INFORMACJE O PRODUKCIE

2.1. WŁAŚCIWOŚCI

- Możliwość tworzenia na bazie magistrali RS485 sieci z adresowalnymi wezłami do których podłaczane są czujniki 1-WIRE,
- Konwersja protokołu 1-WIRE na MODBUS-RTU,
- Wspierane układy z interfejsem 1-WIRE : DS1820, DS18S20, DS18B20, DS1822, DS2438Z, DS2401.
- Odczyt pomiaru temperatury, wilgotności, ciśnienia atmosferycznego z 64 cyfrowych czujników,
- Długość magistrali 1-WIRE do 300m zależna od ilości czujników, sposobu ich połączenia, użytych kabli,
- Rozdzielczość pomiaru zależna od zastosowanych czujników 0.50°C dla DS1820, DS18S20, 0.0625°C dla DS18B20, DS1822,
- Prędkość transmisji danych na magistrali RS-485 do 230,4 kbps,
- Prędkość transmisji na magistrali 1-WIRE standard: do 16,3 kbps, overdrive: do 142 kbps,
- Zasilanie zewnętrzne od 10 do 30 VDC stabilizowane, pobór mocy do 3W w zależności od liczby i typu czujników,
- Izolacja galwaniczna między interfejsem RS-485 a zasilaniem 3kV=,
- Optoizolacja miedzy interfejsem RS-485 a 1-WIRE w torze sygnałowym ~3kV=,
- Obudowa zgodna ze standardem DIN 43880 do montażu w typowych szafkach elektroinstalacyjnych,
- Obudowa przystosowana do montażu na szynie zgodnej ze standardem DIN EN 50022,
- Wymiary obrysu obudowy (SZ x W x G) 53mm x 90mm x 58mm,
- Przyłączenie magistrali RS-485 i 1-WIRE przez złącza śrubowe,
- Wbudowane zabezpieczenie przeciw zwarciowe i przeciwprzepięciowe na liniach RS-485 i 1-WIRE,
- Wbudowane zabezpieczenie przed odwrotnym podłączeniem zasilania.

2.2. OPIS

Zastosowanie cyfrowych czujników temperatury, wilgotności względnej, ciśnienia atmosferycznego z intefejsem 1-WIRE, które zmierzoną wartość pomiaru przekazują za pomocą protokołu transmisji danych eliminuje wpływ długości przewodów na pomiar jak ma to miejsce w systemach bazujących na analogowym przetwarzaniu sygnału. Zaletą stosowania cyfrowych czujników jest również znacznie łatwiejsze niż w rozwiązaniach standardowych (analogowych) prowadzenie procedur testowych, które pomagają wyeliminować niesprawne elementy systemu. Jednak komunikacja z czujnikami 1-WIRE nie należy do najprostszych i trudno jest ją zaimplementować w sterownikach przemysłowych. Rozwiązaniem tej niedogodności jest adresowalny moduł pomiarowy dla czujników z interfejsem 1-WIRE ADA-401WP z zaimplementowanym protokołem MODBUS-RTU. Umożliwia on na bazie magistrali RS485 i protokołu MODBUS-RTU budowanie sieci z adresowalnymi węzłami, do których można podłączyć wiele czujników temperatury z interfejsem 1-WIRE. Zastosowanie modułu pomiarów ADA-401WP jako adresowalnego węzła dla magistrali 1-WIRE pozwala na zwiększenie odległości do 1200m między urządzeniami 1-WIRE a komputerem PC z oprogramowaniem monitorującym typu SCADA czy innym urządzeniem typu MASTER np. sterownikiem PLC. Zastosowanie dodatkowego konwertera RS232/ RS485 ADA-1040 lub USB/RS485 ADA-19140 umożliwia monitorowanie modułów ADA-401WP poprzez interfejs RS-232 lub USB z komputera klasy PC wyposażonego w odpowiednie oprogramowanie typu SCADA. ADA-401WP wyposażony jest w listwę zacisków śrubowych dla skrętkowych połączeń magistrali 1-WIRE i RS-485, a także do podłączenia zasilania. Ochronę przeciwprzepięciową na każdej linii RS-485 wykonano na bazie diod przeciwprzepięciowych 600W i bezpieczników. Do magistrali RS485 można podłączyć 32 urządzenia ADA-401WP. Po zastosowaniu:

separatora/repeater'a ADA-4040 można podłączyć kolejne 32 moduły i wydłużyć magistralę RS485 o kolejny odcinek 1200m,
 hub'a RS485 ADA-4044H można podłączyć do 128 modułów, zmienić topologię magistrali RS485 z liniowej na gwiazdę, każde ramię gwiazdy może mieć długość 1200 metrów,

- konwerterów ETHERNET na RS485 ADA-13040 lub Wi-Fi na RS485 ADA-14040 można podłączyć moduły ADA-401WP z dowolnej lokalizacji do systemu monitorowania i sterowania.

ADA-401WP przystosowany jest do zasilania z zewnętrznego źródła napięcia stałego stabilizowanego (np. zasilacz DR-15-12), którego wartość powinna zawierać się w granicach od 10V= do 30V=, pobór mocy 3W. Posiada również wbudowane zabezpieczenie przed odwrotną polaryzacja zasilania.

2.3. ZASTOSOWANIE

Moduł pomiarów temperatury ADA-401WP znajduje zastosowanie we wszelkiego typu systemach:

- wielopunktowej rejestracji i regulacji temperatury,
- sterowania pracą klimatyzacji i ogrzewania,
- monitorowania temperatury dla potrzeb normy HACCP,
- monitorowania temperatury w silosach zbożowych, magazynach, chłodniach, suszarniach,
- inteligentny budynek.

2.4. IZOLACJA

W module ADA-401WP izolacja galwaniczna wykonywana jest jako dwudrożna, 3kV=.

IZOLACJA DWUDROŻNA

Rys 2. Struktura izolacji w ADA-401WP

3. INSTALACJA

Ten rozdział pokaże jak poprawnie podłączyć ADA-401WP do komputera, magistrali RS485/RS422, magistrali 1-WIRE i zasilania oraz jak używać ADA-401WP.

W celu minimalizacji wpływu zakłóceń z otoczenia zaleca się :

-stosowanie w instalacji kabli ekranowanych typu skrętka-wieloparowa , których ekran można podłączyć do uziemienia na jednym końcu kabla,

-układać kable sygnałowe w odległości nie mniejszej niż 25 cm od kabli zasilających,

-do zasilania modułów stosować kabel o odpowiednim przekroju ze względu na spadki napięcia,

-stosować filtry przeciwzakłóceniowe do zasilania modułów instalowanych w obrębie jednego obiektu,

-nie zasilać modułów z obwodu zasilania urządzenia generującego duże zakłócenia impulsowe np. przekaźniki, styczniki, falowniki.

3.1. MONTAŻ

Obudowa konwertera ADA-401WP jest przystosowana do montażu na listwie TS-35 (DIN35). W celu zamontowania na listwie należy konwerter górną częścią obudowy zawiesić zaczepami na listwie TS-35 następnie docisnąć do listwy dolną część obudowy aż do usłyszenia charakterystycznego dźwięku "klik" gdy dolny zaczep zaczepi obudowę na listwie.

3.2. PODŁĄCZENIE DO KOMPUTERA

W celu podłączenia modułu ADA-401WP do komputera PC należy użyć konwertera RS232 na RS485 ADA-I1040 lub konwertera USB na RS485 ADA-I9140. Przykładowe podłączenie przedstawiono na rysunkach 3, 4.

3.3. PODŁĄCZENIE DO MAGISTRALI RS485 / RS422

Standard EIA-485 pozwala na podłączenie do magistrali RS485 do 32 urządzeń na długości do 1200m. W celu podłączenia większej ilości urządzeń lub zwiększenia długości magistrali należy zastosować dodatkowe urządzenia typu separator / repeater np. ADA-4040, ADA-4044H. Aby podłączyć magistralę RS485 do modułu ADA-401WP, należy wyposażyć się w płaski wkrętak, który umożliwi zamontowanie przewodów w listwie zaciskowej.

Sposób podłączenia magistrali RS485 do modułu ADA-401WP przedstawiono na poniższych rysunkach.

Rys 3. Przykładowe podłączenie modułów ADA-401WP do 4-przewodowej magistrali RS485

Rys 4. Przykładowe podłączenie modułów ADA-401WP do 2-przewodowej magistrali RS485

3.3.1. ŁĄCZENIE ZACISKÓW GND

Łączenie zacisków GND interfejsów RS485/RS422 urządzeń podłączonych do magistrali RS485/RS422 należy wykonać w przypadku różnicy potencjałów mas interfejsów RS485/RS422, która uniemożliwia prawidłową transmisję danych. Nie można podłączać do zacisku GND interfejsu RS485/RS422 ekranów kabli, obwodu PE instalacji elektrycznej, mas innych urządzeń.

3.3.2. PODŁĄCZENIE REZYSTANCJI KOŃCOWEJ RŁ DO MAGISTRALI RS485.

Zastosowanie rezystancji końcowej Rt = 120Ω pozwala na zmniejszenie wpływu odbić w liniach długich i przy dużej prędkości transmisji. Dla prędkości poniżej 9600Bd rezystor nie jest potrzebny. Dla odległości powyżej 1000m i 9600Bd lub 700m i prędkości 19200Bd rezystor może być niezbędny, jeżeli wystąpią problemy z poprawnością transmisji. Rezystory końcowe (terminujące) Rt w ADA-401WP podłączamy do zacisków śrubowych interfejsu RS485 / RS422. Przykładowe podłączania rezystorów terminujących Rt przedstawiono na Rys. 3, Rys. 4.

3.4. PODŁĄCZENIE DO MAGISTRALI 1-WIRE

3.4.1. PODŁĄCZENIE CZUJNIKÓW TEMPERATURY

Aby podłączyć magistralę 1-WIRE do modułu ADA-401WP, należy wyposażyć się w płaski wkrętak, który umożliwi zamontowanie przewodów w listwie zaciskowej.

Sposób podłączenia czujników temperatury 1-WIRE do modułu ADA-401WP przedstawiono na poniższych rysunkach.

ADA-401WP

Rys 6. Podłączenie czujników do modułu ADA-401WP 2-przewodową magistralą 1-WIRE

3.4.2. OBSŁUGIWANE CZUJNIKI Z INTERFEJSEM 1-WIRE

Do modułu ADA-401WP można podłączyć następujące czujniki :

- wykonane na układach DS1820, DS18S20, DS18B20, DS1822, DS2438Z, DS2401

- czujniki temperatury DTS-103, DTS107,

- czujniki parametrów środowiska DES-200 (temperatury, wilgotności względnej, ciśnienia atmosferycznego),
- czujniki parametrów środowiska DES-215 (temperatury, wilgotności względnej, ciśnienia atmosferycznego, oświetlenia)

- czujniki parametrów środowiska DES-300 (temperatury, wilgotności względnej, ciśnienia atmosferycznego, oświetlenia, nasłonecznienia, koncentracji CO2),

- -przetwornik czujnik PT100 na 1-WIRE DES-215-PT100.
- -przetwornik czujnik PT500 na 1-WIRE DES-215-PT500.

-przetwornik czujnik PT1000 na 1-WIRE DES-215-PT1000.

-przetwornik napięcia 0-10V DC na 1-WIRE DES-215-U.

-przetwornik prądu 0-20mA DC na 1-WIRE DES-215-I.

Sposób podłączenie wyżej wymienionych czujników do ADA-401WP przedstawiono w instrukcjach obsługi czujników.

3.4.3. OGRANICZENIA MAGISTRALI 1-WIRE

Maksymalna długość magistrali 1-WIRE jak podaje producent układów może wynieść nawet 400m, a maksymalna liczba czujników 500 sztuk. Jednak podczas budowania magistrali należy pamiętać że, każdy czujnik stanowi skrócenie połączeń o 0,5 metra a każde 100 metrów kabla powoduje obciążenie linii danych dodatkową pojemnością 5nF zwiększającą zniekształcenia sygnału. Praktyczna długość magistrali 1-WIRE oraz ilość czujników będzie mniejsza i będzie zależała od:

- zastosowanych kabli,
- topologii połączeń,
- jakości wykonania połączeń,

- zakłóceń od zewnętrznych pól elektromagnetycznych.

ZALECA SIĘ :

- zastosowanie do wykonania magistrali 1-WIRE jednego typu kabla, zalecany kabel to skrętka komputerowa UTP-4x2x0,5,

- wykonanie magistrali 1-WIRE w topologii liniowej lub zastosować pasywny rozdzielacz DNB-400 magistrali 1-WIRE,
- zakańczanie magistrali 1-WIRE czujnikiem,
- łączenie niewykorzystanych przewodów i ekranu kabla do szyny PE instalacji elektrycznej,

- zasilanie modułu ADA-401WP z indywidualnego zasilacza.

3.5. PODŁĄCZENIE ZASILANIA

W celu podłączenia zasilania do modułu ADA-401WP należy zaopatrzyć się w zasilacz stabilizowany o napięciu wyjściowym od 10V= do 30V= o mocy minimalnej 3W, np. ZS-12/250.

Długość kabla zasilającego od zasilacza do urządzenia nie powinna przekroczyć 3 m.

Podłączyć biegun dodatni (+) zasilacza do zacisku Vss+, a ujemny (-) do Vss- na listwie zaciskowej modułu.

ADA-401WP posiada zabezpieczenie przed odwrotnym podłączeniem napięcia zasilającego. Jeżeli po podłączeniu zasilania na panelu frontowym nie świeci się zielona dioda oznaczona jako PWR należy sprawdzić prawidłowość podłączenia zasilania (polaryzację).

4. URUCHOMIENIE

Po poprawnym wykonaniu instalacji według powyższych punktów możemy załączyć zasilanie zasilacza. Przy prawidłowym podłączeniu powinna zaświecić się zielona dioda PWR na froncie modułu. ADA-401WP posiada zabezpieczenie przed odwrotnym podłączeniem napięcia zasilającego. Jeżeli po podłączeniu zasilania na froncie modułu nie świeci się zielona dioda oznaczona jako PWR należy sprawdzić prawidłowość podłączenia zasilania. Podczas transmisji danych przez moduł powinny mrugać diody LED Tx i Rx. Diody te oznaczają odpowiednio:

LED	Opis
PWR	sygnalizacja obecności zasilania modułu
Rx	sygnalizacja odbioru danych przez moduł ADA-401WP z portu 1-WIRE.
Тх	sygnalizacja transmisji danych z modułu ADA-401WP przez port 1-WIRE.

4.1. SYGNALIZACJA BŁĘDÓW PRACY

Po uruchomieniu moduł ADA-401WP może sygnalizować krótkim dźwiękiem różnego typu błędy jak :

- błędy wyszukiwania czujników,
- błędy odczytu temperatury z czujników,
- błędy w komunikacji po RS485,
- błędy CRC numeru seryjnego czujników,
- zwarcia na magistrali 1-WIRE,
- brak czujnika,

- brak kontrolera magistrali 1-WIRE.

Przyczynę błędów które generują alarm dźwiękowy należy szukać za pomocą programu ADAUtil sprawdzając :

- Diagnostykę interfejsu RS485,
- Diagnostykę interfejsu 1WIRE,

- Diagnostykę systemu,

- Diagnostykę kanałów pomiarowych.

5. KONFIGURACJA

Konfigurację modułu ADA-401WP przeprowadzić należy za pomocą programu **ADAUtil** dostarczonego na płycie CD razem z zakupionym urządzeniem. W celu skonfigurowania ADA-401WP należy go uprzednio podłączyć do komputera według punktu "PODŁĄCZENIE DO KOMPUTERA" i zasilacza. Po załączeniu zasilacza należy sprawdzić czy na frontowym panelu świeci zielona dioda oznaczona jako PWR. Jeżeli dioda nie świeci, należy sprawdzić polaryzację zasilania podłączonego do ADA-401WP. Jeżeli dioda świeci należy ustawić sekcję przełącznika SW1 do pracy w trybie konfiguracji jak w tabeli poniżej.

SW1-1	SW1-2
ON	OFF

Wejście w tryb konfiguracji powoduje zapalanie żółtej diody LED umieszczonej obok przełącznika SW1 z częstotliwością 1 Hz.

5.1. TRYBY PRACY MODUŁU

Wszystkie możliwe tryby pracy modułu ADA-401WP przedstawione są w poniższej tabeli.

SW1- 1	SW1- 2	Tryb pracy
OFF	OFF	Praca normalna (Modbus)
OFF	ON	Ustawienia producenta (patrz p.USTAWIENIA PARAMETRÓW PRODUCENTA)
ON	OFF	Konfiguracja, Wymiana programu (patrz p. WYMIANA PROGRAMU)
ON	ON	Tryb awaryjnej wymiany programu (patrz p. AWARYJNA WYMIANA PROGRAMU)

Wybór trybu pracy modułu ADA-401WP polega na ustawieniu sekcji przełącznika SW1 w odpowiedniej pozycji. Przełącznik jest dostępny po zdjęciu pokrywki złącz śrubowych (Rys. 1). W celu przestawienia sekcji przełącznika SW1 należy zdjąć pokrywkę złącz z napisem SW1 i małym, płaskim wkrętakiem dokonać odpowiednich przestawień.

5.2. KONFIGURACJA GŁÓWNA MODUŁU

Configuracja ≟- Komunikacja ≟- ADA-401WP	Nazwa modułu	Wersja CPU Wesja programu 002.001 001.005 Wymień Program
Kanały pomiarowe Monitorowanie MODBUS	Konfiguracja modułu Alarmy systemu 🔲 Załączenie alarmu dźwiekowego dla błędów pracy modułu	
	Magistrala RS485 Protokół transmisji Modbus RTU - SLAVE ▼ Adres modułu 32 [1 - 247] Prędkość transmisji 19200 bps ▼ Liczba bitów danych 8 bitów ▼ Kontrola parzystości Brak Bity stopu 1-Bit Stopu ▼ Odstęp między ramkami w znakach 4 [4 - 255]	Magistrala 1-WIRE Prędkość transmisji Standard Liczba grup do obsługi w procesie wwszukiwania 10 - Grupa czujników 22 - Grupa czujników 28 - Grupa czujników
	Konfiguracja pomiarów Sign INT (16-bits) Autom Format danych pomiaru Sign INT (16-bits) Temp Krok odczytu pomiarów 5 sek. [1 - 255] Temp	natyczne Przypisanie Czujnika Temperatury do Kanału Pomiarowego rłącz Automatyczne Przypisanie Czujnika Temperatury do Kanału miarowego peratura APC 30 °C [0 - 50] utaj Konfiguracje z Moduku

Rys 7. Widok okna konfiguracji głównej programu ADAUtil

Konfigurację główną rozpoczynamy od ustawienia sekcji przełącznika SW1 do pracy w tryb konfiguracji jak w tabeli poniżej.

SW1-1	SW1-2
ON	OFF

Wejście w tryb konfiguracji powoduje zapalanie żółtej diody LED umieszczonej obok przełącznika SW1 z częstotliwością 1 Hz.

Po uruchomieniu programu **ADAUtil** w lewym oknie podświetlamy gałąź **Konfiguracja>Komunikacja** następnie w prawym oknie wybieramy port COM przez który będziemy konfigurowali moduł.

Przechodzimy do gałęzi **Konfiguracja>Komunikacja>ADA-401WP** w prawym oknie pojawi się dialog konfiguracji głównej. Odczytujemy konfigurację główną zapisaną w pamięci ADA-401WP naciskając przycisk **[Odczytaj Konfigurację z Modułu]**. Po odczytaniu konfiguracji należy ustawić parametry w kolejnych sekcjach.

5.2.1. ALARMY SYSTEMU

Konfiguracja Alarmy Systemu pozwala na :

- Załączenie alarmu dźwiękowego dla błędów pracy modułu, - załączenie lub wyłączenie (wyłączona – ustawienie producenta), Błędy sygnalizowane krótkim dźwiękiem przez ADA-401WP :

- błędy wyszukiwania czujników,
- błędy odczytu temperatury z czujników,
- błędy CRC numeru seryjnego czujników,
- błędy w komunikacji po RS485,
- zwarcia na magistrali 1-WIRE,
- brak czujnika,
- brak kontrolera magistrali 1-WIRE.

5.2.2. KONFIGURACJA MAGISTRALI RS485

Konfiguracja Magistrali RS485 pozwala na :

- Wybór protokołu transmisji MODBUS RTU-SLAVE umożliwia wybór protokołu (aktualnie dostępny tylko MODBUS RTU-SLAVE),
- Adres modułu z zakresu : od 1 247 ustawienie adresu modułu dla wybranego protokołu (64 ustawienie producenta),
- Prędkość transmisji : 300bps 230400bps wybór prędkości transmisji (9600bps ustawienie producenta),
- Liczba bitów danych 8 bitów (parametr tylko do odczytu),
- Kontrola parzystości : Brak, Parzystość, Nieparzystość wybór kontroli parzystości (Brak ustawienie producenta),
- Liczba bitów stopu : 1-Bit, 2-Bity wybór liczby bitów stopu (1-Bit ustawienie producenta),
- Odstęp między ramkami w znakach : 4 255, dla protokołu MODBUS RTU 4-znaki (4 znaki ustawienie producenta).

5.2.3. KONFIGURACJA MAGISTRALI 1-WIRE

Konfiguracja Magistrali 1-WIRE pozwala uzyskać informację o :

- Prędkość transmisji standard (aktualnie dostępna jest prędkość standardowa),
- Liczbie grup czujników/układów 1-WIRE w procesie wyszukiwania (parametr tylko do odczytu),
- Liście obsługiwanych grup czujników/układów 1-WIRE w procesie wyszukiwania (parametr tylko do odczytu).

5.2.4. KONFIGURACJA POMIARÓW

Konfiguracja pomiarów pozwala ustawić :

- Format danych pomiaru : Liczba całkowita ze znakiem 2-bajty (parametr tylko do odczytu),

- Krok pomiaru temperatury : 1 – 255 sek., ustawienie czasu przerwy pomiędzy kolejnymi odczytami pomiarów z podłączonych czujników przez moduł.

5.2.5. KONFIGURACJA AUTOMATYCZNEGO PRZYPISANIA CZUJNIKÓW DO KANAŁÓW POMIAROWYCH (APC)

Funkcja APC pozwala na szybkie przypisanie czujników do kanałów pomiarowych w kolejności określonej przez ich ogrzewanie do temperatury APC. Opis wykorzystania funkcji APC opisano w punkcie "ZMIANA KOLEJNOŚCI CZUJNIKÓW TEMPERATURY ZA POMOCĄ APC".

Konfiguracja funkcji APC :

- Załącz Automatyczne Przypisanie Czujnika do Kanału Pomiarowego : Załącza lub wyłącza funkcję APC modułu,

Temperatura APC : 0 – 50 °C, - ustawienie temperatury APC powyżej której następuje automatyczne przypisanie czujnika do kanału.
 Po dokonaniu zmian konfiguracji należy ją zapisać do pamięci modułu naciskając przycisk [Zapisz Konfigurację do Modułu].
 Powrót do pracy normalnej następuje po ustawieniu sekcji przełącznika SW1 jak w tabeli poniżej.

SW1-1	SW1-2
OFF	OFF

Powrót do pracy normalnej powoduje wygaszenie żółtej diody LED.

5.3. KONFIGURACJA KANAŁÓW POMIAROWYCH

Konfigurację kanałów pomiarowych rozpoczynamy od ustawienia sekcji przełącznika SW1 do pracy w tryb konfiguracji jak w tabeli poniżej.

SW1-1	SW1-2
ON	OFF

Wejście w tryb konfiguracji powoduje zapalanie żółtej diody LED umieszczonej obok przełącznika SW1 z częstotliwością 1 Hz.

5.3.1. DODAWANIE CZUJNIKÓW

Po podłączeniu czujników do modułu ADA-401WP według punktu "PODŁĄCZENIE CZUJNIKÓW TEMPERATURY" i uruchomieniu programu **ADAUtil** w lewym oknie aplikacji podświetlamy gałąź **Konfiguracja > Komunikacja** następnie w prawym oknie wybieramy port COM przez, który będziemy konfigurowali moduł.

Przechodzimy do gałęzi Konfiguracja > Komunikacja > ADA-401WP > Kanały pomiarowe w prawym oknie pojawi się dialog [Konfiguracja i diagnostyka kanałów pomiarowych].

Naciskając przycisk [Odczytaj Konfigurację z Modułu] - odczytujemy konfigurację kanałów pomiarowych z ADA-401WP.

;										
figuracja Komunikacja Konfig	Konfiguracja i diagnostyka kanałów pomiarowych									
ADA-401WP	Konfiguracja ogólna			Konfiguracja parametrów kanałów					Diagnos	
Kanaly pomiarowe Kana Monitorowania MODRUS	ł N/S Czujnika	CRC	Lokalizacja	Wart.Lo	Wart.Hi	Korekta	J.m.	Odblokowa	Przypisany	Wart
	26C0532301000076	OK	ROOM1-TA	15	25	0.00	(TA)°C	🖂 Odblokowa	r 📝 Przypisany	23.00
1	2810174001000023	OK	ROOM1-T	22	25	0.00	°C	🔽 Odblokowa	r 📝 Przypisany	31.13
2	26BF0F8C000000E6	OK	ROOM1-HUM	40	60	0.00	% RH	🔽 Odblokowa	r 📝 Przypisany	21.40
3	26E34C230100008A	OK	ROOM1-PRE	960	990	0.00	hPa	📝 Odblokowa	r 📝 Przypisany	971.80
4	26D C5AC500000048	OK	ROOM1-SLX	0	50	0.00	% SLux	📝 Odblokowa	r 📝 Przypisany	3.63
5	26BF5323010000CA	OK	ROOM1-CO2	500	1200	0.00	CO2 ppm	📝 Odblokowa	r 📝 Przypisany	553.00
6	28E0282D05000029	OK	ROOM2-T	23	25	0.00	°C	🖂 Odblokowa	r 📝 Przypisany	20.94
7	28B0142E0500002A	OK	ROOM3-T	23	25	0.00	°C	📝 Odblokowa	r 📝 Przypisany	20.81
8	28F06F2D050000CA	OK	ROOM4-T	18	20	0.00	°C	🔽 Odblokowa	r 📝 Przypisany	20.94
9	2864E62D0500009F	OK	ROOM5-T	18	20	0.00	°C	💟 Odblokowa	r 📝 Przypisany	21.00
10	285C282D05000053	OK	ROOM6-T	18	25	0.00	°C	🔽 Odblokowa	r 📝 Przypisany	20.88
11	28A2102E05000000	OK	ROOM7-T	18	22	0.00	°C	📝 Odblokowa	r 📝 Przypisany	20.88
12	28C6212D050000DE	OK	ROOM8-T	18	22	0.00	°C	🔽 Odblokowa	r 📝 Przypisany	21.00
13	281E462D050000FB	OK	ROOM9-T	20	22	0.00	°C	📝 Odblokowa	r 📝 Przypisany	20.88
14	28C1E12D05000079	OK	ROOM10-T	20	22	0.00	°C	📝 Odblokowa	r 📝 Przypisany	20.88
15	2831F32D050000F4	OK	ROOM11-T	20	22	0.00	°C	📝 Odblokowa	r 📝 Przypisany	21.00
16	2895DE2D05000060	OK	ROOM12-T	20	22	0.00	°C	🔽 Odblokowa	r 📝 Przypisany	20.88
17	28D51A2D05000028	OK	ROOM13-T	20	22	0.00	°C	🔽 Odblokowa	r 📝 Przypisany	20.94
18	28FD0A2E050000CB	OK	ROOM14-T	20	22	0.00	°C	🔽 Odblokowa	r 📝 Przypisany	20.81
19	2833742D05000000	OK	ROOM15-T	20	22	0.00	°C	📝 Odblokowa	r 📝 Przypisany	20.88
	2040442505000050	OK III	DOOLING			0.00	**			
	Przesuń Czujr	Przesuń Czujnik Zamień Czujniki							Denim i Cherry	- 0
e	z Kanału na ł	Kanał	z Kanału	na Kani	ał 😐	zytaj Koningui	acię z modu	Uuczy	(<u>r</u> omiaiù i Stanu	2 CZUPIKOW
	z 9 na	0	z O	na	0 Odc od	zytaj Konfigu Kanału	rację z Modu do Kanał	ru <u>M</u> o	nitorowanie Czuji	ników
	Zapisz Kor	lfigurację	do Modułu		00	J 0	do	30 <u>R</u> eset	Kontrolera Magis	trali 1-WIRE

Rys 8. Widok okna konfiguracji kanałów pomiarowych programu ADAUtil

Po odczytaniu konfiguracji kanałów pomiarowych w kolumnie **[N/S Czujnika]** zobaczymy numery seryjne wszystkich wyszukanych czujników.

Numery kanałów dla czujników są przydzielane zgodnie z kolejnością ich wyszukiwania przez moduł. Prawidłowo rozpoznanemu czujnikowi przypisywana jest odpowiednia jednostka miary jak w tabeli poniżej. Przypisane do rozpoznanych czujników jednostki miary zobaczymy w kolumnie **[J.m.]**.

Tabela oznaczeń czujników/przetworników

Czujnik/Przetwornik	Jednostka miary	Czujnik/Przetwornik	Jednostka miary
Temperatury	°C	Przetwornik 0-10VDC	V U10
Wilgotność względnej	%RH	Przetwornik 0-20mADC	mA A20
Ciśnienia atmosferycznego	hPa	Układ DS2401 numer seryjny	S/N
Oświetlenie (światło słoneczne i sztuczne)	%Lux	Nierozpoznany czujnik	???
Nasłonecznienie (światło słoneczne)	%SLux		
Zadajnik temperatury	(TA)°C		
Zadajnik wartości procentowej	(PA)%		
Stężenie CO2	CO2 ppm		
Przetwornik czujnik PT100 na 1-WIRE	°C PT100		
Przetwornik czujnik PT500 na 1-WIRE	°C PT500		
Przetwornik czujnik PT1000 na 1-WIRE	°C PT1000		

Jeżeli przed odczytaniem konfiguracji kanałów pomiarowych do modułu nie były podłączone czujniki, to pola w kolumnie **[N/S Czujnika]** będą puste.

W takim przypadku do modułu ADA-401WP należy podłączyć czujnik(-ki) i ponownie odczytać konfigurację kanałów pomiarowych z pamięci ADA-401WP naciskając przycisk **[Odczytaj Konfigurację z Modułu]**.

Dodanie kolejnych czujników polega na podłączeniu ich do modułu ADA-401WP i odczytaniu konfiguracji kanałów pomiarowych z pamięci ADA-401WP naciskając przycisk **[Odczytaj Konfigurację z Modułu]**.

UWAGA !!!

Żeby nowo dodawane czujniki zajmowały kolejne kanały pomiarowe należy ustawić parametr Przypisany dla poprzednio dodanych czujników i zapisać konfigurację kanałów do modułu naciskjąc przycisk **[Zapisz Konfigurację do Modułu]**.

Po dodaniu wszystkich czujników do kanałów pomiarowych należy ustalić kolejność czujników i wykonać konfigurację kanałów pomiarowych jak opisano poniżej.

5.3.2. ZMIANA KOLEJNOŚCI CZUJNIKÓW

Kolejność czujników można zmieniać przez: -przesuwanie czujnika, -zamianę czujników, -procedurę APC. Wszystkie sposoby zostały opisane poniżej.

5.3.2.1. PRZESUWANIE CZUJNIKA

W celu przesunięcia czujnika z jednego kanału do drugiego pod przyciskiem [**Przesuń Czujnik z Kanału na Kanał**] wpisujemy w pole **[z]** numer kanału, z którego czujnik ma być przeniesiony a w pole **[na]** numer kanału, do którego czujnik ma być przeniesiony. Następnie naciskamy przycisk [**Przesuń Czujnik z Kanału na Kanał**].

W celu zapisania do pamięci modułu zmiany w konfiguracji naciskamy przycisk [Zapisz Konfigurację do Modułu].

Do pamięci modułu zostanie zapisana konfiguracja tylko tych kanałów pomiarowych, których pola zostały podświetlone na różowo.

5.3.2.1. ZAMIANA CZUJNIKÓW

W celu zamiany czujników miejscami wpisujemy w pola **[z]** i **[na]** umieszczone pod przyciskiem **[Zamień Czujnik z Kanału na Kanał]**, numery kanałów, dla których mają zostać zamienione czujniki. Następnie naciskamy powyższy przycisk. W celu zapisania do pamięci modułu zmiany w konfiguracji naciskamy przycisk **[Zapisz Konfigurację do Modułu]**. Do pamięci modułu zostanie zapisana konfiguracja tylko tych kanałów pomiarowych, których pola zostały podświetlone na różowo.

5.3.2.2. ZMIANA KOLEJNOŚCI CZUJNIKÓW TEMPERATURY ZA POMOCĄ APC

Jeżeli nie znamy lokalizacji czujników w instalacji to możemy, przypisać czujniki temperatury do kanałów pomiarowych wykorzystując funkcję Automatycznego Przypisania Czujników temperatury.

Procedurę Automatycznego Przypisania Czujników (APC) temperatury wykonujemy w następujących krokach:

- 1. Podłączamy magistralę czujników do modułu ADA-401WP.
- 2. W programie ADAUtil w lewym oknie programu wybieramy gałąź Konfiguracja>Komunikacja>ADA-401WP i naciskamy przycisk [Odczytaj Konfigurację z Modułu].
- 3. Następnie w grupie Automatyczne Przypisanie Czujnika Temperatury do Kanału Pomiarowego zaznaczamy opcję [Załącz Automatyczne Przypisanie Czujnika Temperatury do Kanału Pomiarowego] oraz w polu edycyjnym [Temperatura APC] wpisujemy temperaturę graniczną APC po przekroczeniu której nastąpi automatyczne przypisanie podgrzanego czujnika do kanału pomiarowego. Czujniki przypisywane są kolejno do kanału o numerze 0, 1, 2, 3 ... itd.
- 4. Naciskamy przycisk [Zapisz Konfigurację do Modułu].
- 5. W lewym oknie programu ADAUtil wybieramy gałąź Konfiguracja>Komunikacja>ADA-401WP>Kanały pomiarowe i naciskamy przycisk [Odczytaj Konfigurację z Modułu].
- 6. Po odczytaniu konfiguracji kanałów pomiarowych naciskamy przycisk [Monitorowanie Czujników] .
- 7. Następnie ogrzewamy czujniki w wybranej kolejności np. jak na rysunku poniżej. Jeżeli temperatura czujnika przekroczy ustawioną temperaturę APC nastąpi automatyczne przypisanie czujnika do kanału pomiarowego przez moduł ADA-401WP. Każde przypisanie czujnika do kanału pomiarowego jest sygnalizowane przez moduł i program krótkim dźwiękiem.
- 8. Procedurę Automatycznego Przypisania Czujników kończymy naciskając ponownie przycisk [Monitorowanie Czujników].
- W lewym oknie programu wybieramy gałąź Konfiguracja>Komunikacja>ADA-401WP. Następnie w grupie Automatyczne Przypisanie Czujnika Temperatury do Kanału Pomiarowego odznaczamy opcję [Załącz Automatyczne Przypisanie Czujnika Temperatury do Kanału Pomiarowego].
- 10.Naciskamy przycisk **[Zapisz Konfigurację do Modułu].** Zapisanie konfiguracji wyłączy algorytm **Automatycznego Przypisania Czujnika Temperatury do Kanału Pomiarowego** w module ADA-401WP.

Rys 9. Ilustracja procedury Automatycznego Przypisania Czujników temperatury do kanałów pomiarowych

5.3.3. USUWANIE CZUJNIKÓW

Klikamy dwukrotnie na pole **[S/N Czujnika]** danego kanału, naciskamy klawisz **DEL** na klawiaturze i przechodzimy do następnego pola. W celu zapisania do pamięci modułu zmiany w konfiguracji naciskamy przycisk **[Zapisz Konfigurację do Modułu]**. Do pamięci modułu zostanie zapisana konfiguracja tylko tych kanałów pomiarowych, których pola zostały podświetlone na różowo.

5.3.4. KONFIGURACJA PARAMETRÓW KANAŁU POMIAROWEGO

Po zakończeniu dodawania i zmiany kolejności czujników przystępujemy do konfiguracji pozostałych parametrów kanałów pomiarowych. Kolejno wypełniamy pola:

Lokalizacja – wpisujemy miejsce zainstalowania czujnika maksymalnie 9 znaków.

- Wartość Lo wartość dolnej granicy mierzonej wielkości. Jeżeli mierzona przez czujnik wartość pomiaru będzie niższa to zostanie wystawiona flaga przekroczenia dolnego progu W < WL w rejestrze stanu kanału pomiarowego.
- Wartość Hi wartość górnego progu mierzonej wielkości. Jeżeli mierzona przez czujnik wartość pomiaru będzie wyższa to zostanie wystawiona flaga przekroczenia górnego progu W > WH w rejestrze stanu kanału pomiarowego.
- Korekcja jest to wartość o jaką zostanie zwiększona lub zmniejszona zmierzona przez czujnik wartość pomiaru w celu liniowej kalibracji pomiaru. Wartość Korekcji zależy od rodzaju czujnika i wynosi :

-od -1.27° C do $+1.27^{\circ}$ C dla cyfrowych czujników temperatury DTS-RJ45, DTS-103, DTS-104, DES-200, DES-300-T itd. ,

-od -12.70%Hig do +12.70%Hig dla cyfrowych czujników wilgotności względnej DES-215-H, DES-300-H itp.

- -od -12.70hPa do +12.70hPa dla cyfrowych czujników ciśnienia atmosferycznego DES-215-APS, DES-300-APS itp. **Odblokowany** uaktywnienie tego pola powoduje aktualizację pomiaru i stanu dla kanału, odznaczenie pola spowoduje
- zablokowany uaktywnienie tego pola powoduje aktualizację pomiaru i stanu ula kanału, odznaczenie p zablokowanie aktualizacji pomiaru i stanu kanału pomiarowego
- Przypisany uaktywnienie tego pola powoduje przypisanie czujnika do kanału. Jest to odpowiednik przykręcenia analogowego czujnika temperatury do zacisków urządzenia. Odznaczenie pola spowoduje, że przy następnym wyszukiwaniu czujników przez moduł w polu [S/N Czujnika] kanału może pojawić się numer seryjny innego czujnika.

Każda prawidłowa zmiana w tabeli konfiguracji kanałów pomiarowych powoduje podświetlenie w kolorze różowym aktualizowanego pola.

Po dokonaniu zmian w konfiguracji należy ją zapisać do pamięci modułu naciskając przycisk **[Zapisz Konfigurację do Modułu]**. Do pamięci modułu zostanie zapisana konfiguracja tylko tych kanałów pomiarowych, których pola zostały podświetlone na różowo.

Powrót do pracy normalnej następuje po ustawieniu sekcji mikro przełącznika SW1 jak w tabeli poniżej.

SW1-1	SW1-2
OFF	OFF

Powrót do pracy normalnej powoduje wygaszenie żółtej diody LED.

5.4. ZAPIS KONFIGURACJI DO PLIKU

Konfigurację główną i konfigurację kanałów pomiarowych można zapisać do pliku konfiguracyjnego. Pozwala to zachować konfigurację każdego z modułów pomiarowych wchodzących w skład systemu monitorowania i sterowania temperatury. W celu zapisania konfiguracji wybieramy menu **Konfiguracja > Zapisz** lub **Zapisz jako** otworzy się okno **[Zapisz jako**] (Rys. 10). W polu **[Nazwa pliku]** wpisujemy nazwę pliku konfiguracyjnego a następnie naciskamy przycisk **[Zapisz]**.

💮 Zapisz jako						×
Za <u>p</u> isz w:	🔰 _Cfg		•	G 🗊 🖻		
Ca	Nazwa		^			
Ostatnie miejsca	ź	Zadne elementy nie pa	asują do kryter	iów wyszuki	wania.	
Pulpit						
iii ii Biblioteki						
Komputer	•	III				÷.
	<u>N</u> azwa pliku:	biuro.utl		-		Zapisz
	Zapisz jako typ:	Plik konfiguracyjny A	DAUtil (*.utl)			Anuluj

Rys 10. Zapisywanie konfiguracji modułu do pliku konfiguracyjnego

5.5. WYDRUK KONFIGURACJI

Konfigurację główną i kanałów pomiarowych możemy wydrukować w następujący sposób. W lewym oknie aplikacji podświetlamy gałąź Konfiguracja > Komunikacja > ADA-401WP > Kanały pomiarowe a następnie wybieramy menu Konfiguracja > Drukuj lub Podgląd wydruku i drukujemy.

5.6. WYMIANA PROGRAMU

W celu wymiany programu obsługi ADA-401WP musimy wprowadzić urządzenie w tryb konfiguracji ustawiając sekcje przełącznika SW1 jak w tabeli poniżej.

SW1-2
OFF

Wejście w tryb konfiguracji powoduje zapalanie żółtej diody LED umieszczonej obok mikro przełącznika SW1 z częstotliwością 1 Hz.

Uruchamiamy program **ADAUtil** w lewym oknie podświetlamy gałąź **Konfiguracja>Komunikacja**. **W** prawym oknie wybieramy port COM przez który będziemy prowadzić wymianę programu.

Przechodzimy do gałęzi Konfiguracja>Komunikacja>ADA-401WP następnie za pomocą przycisku [Wymień program] (Rys. 7) dokonujemy wymiany dostarczonego przez producenta programu. Naciśnięcie tego przycisku powoduje otwarcie okna (Rys. 11), w którym wskazujemy lokalizację pliku z rozszerzeniem *.bin. Po podświetleniu pliku programu i naciśnięciu przycisku [Otwórz] następuje załadowanie programu do bufora ADAUtil i jego sprawdzenie. Jeśli program ADAUtil nie wykryje błędów w załadowanym pliku możemy przystąpić do wymiany oprogramowania modułu. Proces wymiany programu wizualizowany jest przez ADAUtil za pomocą paska postępu i po udanej wymianie potwierdzany odpowiednim komunikatem.

💮 Otwieranie						X
<u>S</u> zukaj w:	🔒 _Firmware		-	3 🗊 E	۶ 🛄 ד	
Ostatnie miejsca Pulpit	Nazwa	P.BIN				
Biblioteki						
Komputer	•	III				•
	<u>N</u> azwa pliku:	ADA-401WP.BIN			-)twór <u>z</u>
	<u>Pliki typu:</u>	Plik bin (*.bin)			•	Anuluj

Rys 11. Wybór pliku z programem modułu

Podczas ładowania programu żółta dioda LED umieszczona obok mikro przełącznika SW1 miga pokazując przepływ danych do ADA-401WP. Jeżeli program został załadowany poprawnie żółta dioda LED zacznie ponownie migać z częstotliwością 1 Hz.

Uwaga! Nie wyłączać zasilania modułu podczas wymiany programu.

Po udanej wymianie można powrócić do pracy normalnej ustawiając sekcję mikro przełącznika SW1 jak w poniższej tabeli.

SW1-1	SW1-2
OFF	OFF

Powrót do pracy normalnej powoduje wygaszenie żółtej diody LED umieszczonej obok przełącznika SW1.

5.7. AWARYJNA WYMIANA PROGRAMU

W przypadku nieudanej wymiany programu obsługi modułu należy spróbować wymienić go ponownie według opisu zawartego w punkcie "WYMIANA PROGRAMU".

Jeśli ta operacja się nie powiedzie należy skorzystać z możliwości awaryjnej wymiany oprogramowania.

W celu wejścia w tryb awaryjnej wymiany programu ustawiamy sekcję mikro przełącznika SW1 jak w tabeli poniżej.

SW1-1	SW1-2
ON	ON

Następnie należy wyłączyć i po chwili ponowne załączyć zasilanie modułu.

Po tej czynności moduł powinien znajdować się w trybie awaryjnej wymiany oprogramowania. W tym trybie pracy modułu, żółta dioda LED umieszczona obok mikro przełącznika SW1 świeci światłem ciągłym. Teraz należy dokonać wymiany programu w sposób opisany poniżej.

Uruchamiamy program **ADAUtil** w lewym oknie podświetlamy gałąź **Konfiguracja>Komunikacja.** W prawym oknie wybieramy port COM przez który będziemy prowadzić wymianę programu.

Przechodzimy do gałęzi **Konfiguracja>Komunikacja>ADA-401WP** następnie za pomocą przycisku **[Wymień program]** (Rys. 7) dokonujemy wymiany dostarczonego przez producenta programu. Naciśnięcie tego przycisku powoduje otwarcie okna (Rys. 11), w którym wskazujemy lokalizację pliku z rozszerzeniem *.bin. Po podświetleniu pliku programu i naciśnięciu przycisku **[Otwórz]** następuje załadowanie programu do bufora **ADAUtil** i jego sprawdzenie. Jeśli program **ADAUtil** nie wykryje błędów w załadowanym pliku możemy przystąpić do wymiany oprogramowania modułu. Proces wymiany programu wizualizowany jest przez **ADAUtil** za pomocą paska postępu i po udanej wymianie potwierdzany odpowiednim komunikatem.

Uwaga! Nie wyłączać zasilania modułu podczas wymiany programu.

Po udanej wymianie można powrócić do pracy normalnej ustawiając sekcję mikro przełącznika SW1 jak w tabeli poniżej.

SW1-1	SW1-2
OFF	OFF

Powrót do pracy normalnej powoduje wygaszenie żółtej diody LED umieszczonej obok przełącznika SW1.

5.8. USTAWIANIE PARAMETRÓW PRODUCENTA

W przypadku problemów z pracą modułu ADA-401WP:

- braku komunikacji w trybie konfiguracji,

- wizualizacji wartości pomiaru temperatury z dokładnością 0,5°C,

- błędów transmisji na magistrali 1-WIRE,

można dokonać przywrócenia ustawień producenta wewnętrznych rejestrów modułu.

W celu przywrócenia ustawień producenta należy ustawić sekcje przełącznika SW1 jak w tabeli poniżej.

SW1-1	SW1-2
OFF	ON

Następnie wyłączyć i po chwili ponowne załączyć zasilanie modułu. Po wykonaniu tej czynności do rejestrów wewnętrznych modułu zostaną załadowane ustawienia producenta.

Powrót do pracy normalnej ustawiając sekcję mikro przełącznika SW1 jak w poniższej tabeli.

SW1-1	SW1-2
OFF	OFF

6. DIAGNOSTYKA

6.1. DIAGNOSTYKA MODUŁU

W celu odczytania diagnostyk modułu należy ustawić sekcje przełącznika SW1 do pracy w trybie konfiguracji jak w tabeli poniżej.

SW1-1	SW1-2	
ON	OFF	

Wejście w tryb konfiguracji powoduje zapalanie żółtej diody LED umieszczonej obok przełącznika SW1 z częstotliwością 1 Hz. Do odczytania diagnostyk modułu należy uruchomić program ADAUtil w lewym oknie wybrać gałąź **Konfiguracja > Komunikacja >**

ADA-401WP.

W kolejnych sekcjach diagnostyki modułu możemy sprawdzić poprawność transmisji danych przez interfejsy RS485 i 1-WIRE oraz stabilność pracy modułu.

6.1.1. DIAGNOSTYKA INTERFEJSU RS485

Możemy odczytać licznik błędów ramki i licznik błędów parzystości naciskając przycisk **[Odczytaj Liczniki]**. Kasowania liczników dokonujemy używając przycisku **[Kasuj Liczniki]** co spowoduje wyzerowanie liczników w pamięci modułu. Licznik błędnych ramek jest zwiększany np. w przypadku źle ustawionej prędkości w stosunku do rzeczywistej prędkości przesyłanych danych. Natomiast licznik błędów parzystości liczy błędy mogące powstać w przypadku przekłamania bitów w transmitowanym znaku. Licznik ten nie działa przy wyłączonej kontroli parzystości.

6.1.2. DIAGNOSTYKA INTERFEJSU 1-WIRE

Możemy odczytać licznik błędów wyszukiwania i licznik błędów odczytu pomiaru naciskając przycisk [Odczytaj Liczniki]. Kasowania liczników dokonujemy używając przycisku [Kasuj Liczniki] co spowoduje wyzerowanie liczników w pamięci modułu. Licznik błędów wyszukiwania jest zwiększany w przypadku napotkania błędów podczas procesu wyszukiwania czujników na magistrali 1-WIRE.

Licznik błędów odczytu pomiaru będzie zwiększany w momencie wykrycia nieprawidłowych danych w trakcie odczytu pomiaru.

Konfiguracia Educia Widok Romoc									
E- Konfiguracja - Komunikacja - ADA-401WP - Kanały pomiarowe	Krok odczytu pomiarów 5 sek. [1 - 255]			Temperatura APC 3 Odczytaj Konfigurację z Modułu	50] pisz Konfigurację do Modułu	*			
Monitorowanie MODBUS									
	Diagnostyka modułu Diagnostyka interfejsu RS485								
	Licznik błędów ramki	0	Odczytaj Liczniki	Licznik błędów wyszukiwania	0	Odczytaj Liczniki			
	Licznik błędów parzystości	0	Kasuj Liczniki	Licznik błędów odczytu pomiaru	0	Kasuj Liczniki			
	Diagnostyka systemu								
			Odczytaj Liczniki						
	Licznik restartów WatchDog'a	0	Kasuj Licznik WD	D0. Nie ma zwarć na magistrali 1 D1. Odnaleziono 27 czujników D D2/3. Magistrala 1.W/IRE 3.org	-WIRE. S.				
	Licznik restartów Power-On	1	Kasuj Licznik PO	D4. Komunikacja na magistrali 1- D5. Wykryto kontroler magistrali	WIRE OK. I-WIRE.	Diagnostyki			
	Licznik restartów Przyciskiem	0	Kasuj Licznik P						
	Licznik restartów Brown-Out	0	Kasuj Licznik BO						
							E		
							-		
	٠ [•		
Aby uzyskać Pomoc, naciśnij F1						NUM			

Rys 12. Widok diagnostyki głównej modułu w programie ADAUtil

6.1.3. DODATKOWE DIAGNOSTYKI MAGISTRALI 1-WIRE

W celu odczytania dodatkowych diagnostyk magistrali 1-WIRE należy nacisnąć przycisk [Odczytaj Diagnostyki].

Dodatkowe diagnostyki informują o :

- Zwarciach na magistrali,
- Liczbie odnalezionych czujników,
- Typie magistrali,
- Poprawności komunikacji,
- Wykryciu kontrolera magistrali 1-WIRE.

6.1.4. DIAGNOSTYKA SYSTEMU

Możemy odczytać szereg liczników systemowych, które informują o pracy modułu.

W celu odczytania liczników naciskamy przycisk [Odczytaj Liczniki] .

Kasowanie liczników wykonujemy dla każdego z liczników osobno naciskając odpowiedni przycisk np. **[Kasuj Licznik WD]** co spowoduje wyzerowanie licznika w pamięci modułu.

Licznik restart'ów WatchDog'a - określa liczbę restart'ów procesora przez WatchDog programowy.

Licznik restartów Power-On – określa liczbę załączeń zasilania modułu.

Licznik restart'ów Przyciskiem - określa liczbę naciśnięć przycisku RST (Reset).

Licznik restart'ów Brown-On - określa liczbę spadków napięcia zasilania poniżej dozwolonego poziomu napięcia .

Po zakończeniu diagnostyki możemy powrócić do pracy normalnej ustawiając sekcję przełącznika SW1 jak w poniższej tabeli.

SW1-1	SW1-2
OFF	OFF

Powrót do pracy normalnej powoduje wygaszenie żółtej diody LED umieszczonej obok mikro przełącznika SW1.

6.2. DIAGNOSTYKA KANAŁÓW POMIAROWYCH

☞ 문 X �� @ @ ? №													
onfiguracja Komunikacja	Konfiguracja i diagnostyka kanałów pomiarowych												
	Konfiguracja ogólna Dia			Diagnostyka kanałó w									
Kanały pomiarowe Kanał Monitorowanie MODBUS	N/S Czujnika	CRC	Lokalizacja	Wart	J.m.	W<	₩>	Odblok	Przypis	Zajęty	Wykryty	CRC	1
	26C0532301000076	OK	ROOM1-TA	23.00	(TA)°C			Tak	Tak	Nie	Tak	ОК	1
1	2810174001000023	OK	ROOM1-T	31.13	°C		AL!	Tak	Tak	Nie	Tak	OK	1
2	268F0F8C000000E6	OK	ROOM1-HUM	21.40	% RH	AL!		Tak	Tak	Nie	Tak	OK	1
3	26E34C230100008A	0K	ROOM1-PRE	971.80	hPa	AL!		Tak	Tak	Nie	Tak	OK	1
4	26DC5AC500000048	OK	ROOM1-SLX	3.63	% SLux			Tak	Tak	Nie	Tak	OK	1
5	26BF5323010000CA	OK	ROOM1-CO2	553.00	CO2 ppm			Tak	Tak	Nie	Tak	OK	1
6	28E0282D05000029	OK	ROOM2-T	20.94	°C	AL!		Tak	Tak	Nie	Tak	OK	
7	28B0142E0500002A	OK	ROOM3-T	20.81	°C	AL!		Tak	Tak	Nie	Tak	OK	
8	28F06F2D050000CA	OK	ROOM4-T	20.94	°C		AL!	Tak	Tak	Nie	Tak	OK	
9	2864E62D0500009F	OK	ROOM5-T	21.00	°C		AL!	Tak	Tak	Nie	Tak	OK	
10	285C282D05000053	OK	ROOM6-T	20.88	°C			Tak	Tak	Nie	Tak	OK	
11	28A2102E05000000	OK	ROOM7-T	20.88	°C		AL!	Tak	Tak	Nie	Tak	OK	
12	28C6212D050000DE	OK	ROOM8-T	21.00	°C		AL!	Tak	Tak	Nie	Tak	OK	
13	281E462D050000FB	OK	ROOM9-T	20.88	°C		AL!	Tak	Tak	Nie	Tak	ΟK	
14	28C1E12D05000079	OK	ROOM10-T	20.88	۰C		AL!	Tak	Tak	Nie	Tak	ΟK	
15	2831F32D050000F4	OK	ROOM11-T	21.00	°C		AL!	Tak	Tak	Nie	Tak	OK	
16	2895DE2D05000060	OK	ROOM12-T	20.88	°C		AL!	Tak	Tak	Nie	Tak	OK	
17	28D51A2D05000028	OK	ROOM13-T	20.94	°C		AL!	Tak	Tak	Nie	Tak	OK	
18	28FD0A2E050000CB	OK	ROOM14-T	20.81	°C		AL!	Tak	Tak	Nie	Tak	OK	
19	2833742D05000000	OK	ROOM15-T	20.88	°C		AL!	Tak	Tak	Nie	Tak	OK	
	0040440505000050	OK	DOOLHET	00.04	**			T 1	T 1	10 C	T 1	01	
9	<u>P</u> rzesuń Uzujr z Kanału na k	nik Kanał	Z <u>a</u> n z Kanału	nień Czujni na K	ki <u>O</u> c anał <u>O</u> c	dozytaj K	onfigura	cję z Modułu	u Odca	yt <u>P</u> omiaru	u i Stanu z C	zujnikó	W
	z ⁹ na	0	z O	na		lczytaj k d Kanał	ionfigura u	cję z Modułu do Kanału	1	onitorowa	anie Czujniko	ów	
	Zapisz Kon	figurację	do Modułu			od	0	do 30	<u>B</u> ese	et Kontrole	ra Magistrali	1-WIR	E

Rys 13. Widok okna diagnostyki kanałów pomiarowych programu ADAUtil

Po skonfigurowaniu kanałów pomiarowych możemy przeprowadzić ich diagnostykę oraz sprawdzić poprawność komunikacji na magistrali 1-WIRE.

W celu odczytania diagnostyk kanałów pomiarowych należy ustawić sekcje przełącznika SW1 do pracy w trybie konfiguracji jak w tabeli poniżej.

SW1-1	SW1-2
ON	OFF

Wejście w tryb konfiguracji powoduje zapalanie żółtej diody LED umieszczonej obok przełącznika SW1 z częstotliwością 1 Hz.

Uruchamiamy program **ADAUtil** w lewym oknie podświetlamy gałąź **Konfiguracja>Komunikacja** następnie w prawym oknie wybieramy port COM przez który będziemy prowadzić diagnostykę kanałów pomiarowych.

Następnie przechodzimy do gałęzi Konfiguracja>Komunikacja>ADA-401WP>Kanały pomiarowe w prawym oknie pojawi się dialog [Konfiguracja i diagnostyka kanałów pomiarowych].

Odczytujemy konfigurację kanałów pomiarowych zapisaną w pamięci ADA-401WP naciskając przycisk **[Odczytaj Konfigurację z Modułu]**. Przesuwamy poziomy pasek przewijania w prawo aż zobaczymy tabelę **[Diagnostyka Kanałów]**. Na ekranie mamy widoczne następujące kolumny:

Kanał	- oznacza numer kanału pomiarowego.
N/S Czujnika	- numer seryjny wykrytego czujnika.
Lokalizacja	- miejsce zainstalowania czujnika.
Wartość	- wartość pomiaru odczytana z czujnika.
J.m.	 jednostka miary mierzonej przez czujnik wielkości.
W <wl< td=""><td>- aktywne pole oznacza, że odczytana z czujnika wartość pomiaru jest niższa od dolnego progu pomiaru WL.</td></wl<>	- aktywne pole oznacza, że odczytana z czujnika wartość pomiaru jest niższa od dolnego progu pomiaru WL.
W=>WH	- pole aktywne oznacza, że odczytana z czujnika wartość pomiaru jest wyższa od górnego progu pomiaru WH .
Odblokowany	 aktywne pole informuje, że kanał pomiarowy jest odblokowany i dane pomiarowe oraz stan kanału są aktualizowane na bieżąco.

Przypisany	 aktywne pole informuje, że czujnik o numerze N/S został przypisany do kanału pomiarowego (odpowiednik przykręcenia czujnika temperatury np. Pt. do zacisków przetwornika analogowego).
Zajęty	- aktywne pole oznacza, że aktualnie czujnik jest zajęty przetwarzaniem danych.
Wykryty	- aktywne pole Wykryty oznacza, że wykryto czujnik o numerze seryjnym z pola {N/S Czujnika].
CRC	- aktywne pole CRC oznacza błąd CRC pamięci czujnika lub błąd podłączenia.

Diagnostykę kanałów pomiarowych i temperaturę czujników odczytujemy naciskając przycisk **[Odczyt Pomiarów i Stanu Czujników]**. Jeżeli chcemy stale monitorować diagnostykę kanałów pomiarowych i wartość pomiarów z czujników odczytujemy naciskając przycisk **[Monitorowanie Czujników]**.

Prawidłowa praca magistrali 1-WIRE :

- nie powoduje generowania stanu CRC,

- wykryte są wszystkie podłączone czujniki,

- nie ma błędnych odczytów temperatury.

Po zakończeniu diagnostyki możemy powrócić do pracy normalnej ustawiając sekcję przełącznika SW1 jak w poniższej tabeli.

•••••	
OFF (OFF

Powrót do pracy normalnej powoduje wygaszenie żółtej diody LED umieszczonej obok mikro przełącznika SW1.

6.3. DIAGNOSTYKA PROTOKOŁU MODBUS-RTU

Po zakończeniu diagnostyki kanałów pomiarowych każdego z modułów ADA-401WP znajdujących się w danej instalacji możemy przeprowadzić diagnostykę oraz sprawdzić poprawność komunikacji protokołu MODBUS na magistrali RS485. Przed rozpoczęciem diagnostyki MODBUS-RTU musimy powrócić do pracy normalnej ustawiając sekcję przełącznika SW1 jak w poniższej tabeli.

SW1-1	SW1-2
OFF	OFF

Powrót do pracy normalnej powoduje wygaszenie żółtej diody LED umieszczonej obok mikro przełącznika SW1.

Uruchamiamy program **ADAUtil** w lewym oknie podświetlamy gałąź **Konfiguracja>Komunikacja** następnie w prawym oknie wybieramy port COM przez który będziemy prowadzić diagnostykę MODBUS.

Przechodzimy do gałęzi Konfiguracja>Komunikacja>ADA-401WP>Monitorowanie MODBUS w prawym oknie pojawi się dialog [Monitorowanie MODBUS].

figuracja Edycja <u>W</u> idok Pomo <u>c</u>														
🕼 🖬 🐰 🖻 💼 🞒 🦹 🌾 Konfiguracja														
Konfiguracja														
🖃 Komunikacja	Monitorow	anie MUDBUS					2		-					
ADA-401WP	Kanał	Lokalizacja	Progres	Wartość	J.m.	₩<₩L	W>WH	Odblokowa	Przypisany	Zajęty	Wykryty	CRC	Adres modułu [1-247]	3
Kanały pomiarowe	0	ROOM1-TA		23.00	(TA)°C			Tak	Tak	Nie	Tak	OK	Determine	COM14
Monitorowanie MODBUS	1	ROOM1-T		31.31	°C		AL!	Tak	Tak	Nie	Tak	OK	Fold szelegowy	
	2	ROOM1-HUM		21.08	% RH	ALI		Tak	Tak	Nie	Tak	OK	Prędkść transmisji	19200 bp:
	3	ROOM1-PRE		971.80	hPa	AL!		Tak	Tak	Nie	Tak	OK	E Liczba bitów danych	8 bitów
	4	ROOM1-SLX		3.62	% SLux			Tak	Tak	Nie	Tak	OK	Kontrola parzystości	Brak
	5	R00M1-C02		586.00	CO2 ppm			Tak	Tak	Nie	Tak	OK	Do a	1.02.01
	6	ROOM2-T		21.00	°C	AL!	1111	Tak	Tak	Nie	Tak	OK	Bity stopu	I-Bit Stopi
	7	ROOM3-T		20.94	°C	ALI		Tak	Tak	Nie	Tak	OK	Przeterminowanie [ms] :	
	8	ROOM4-T		21.00	°C		AL!	Tak	Tak	Nie	Tak	OK		0.00
	9	ROOM5-T		21.00	°C	0.000	ALI	Tak	Tak	Nie	Tak	OK	Funkcja MODBUS	UXUS
	10	ROOM6-T		20.94	°C			Tak	Tak	Nie	Tak	OK		
	11	ROOM7-T		20.94	°C	0.755	ALI	Tak	Tak	Nie	Tak	OK	Sygnalizacja dźwięk W Li WH dla pomiar	owa alarmów ów
	12	ROOM8-T		21.06	°C		AL!	Tak	Tak	Nie	Tak	OK	men min dia pomia	
	13	ROOM9-T		20.94	°C	8.00	AL!	Tak	Tak	Nie	Tak	OK		
	14	ROOM10-T		20.94	°C		AL!	Tak	Tak	Nie	Tak	OK	Monitoruj	
	15	R00M11-T		21.00	°C	8.000	AL!	Tak	Tak	Nie	Tak	OK		
	16	ROOM12-T		20.94	°C		ALI	Tak	Tak	Nie	Tak	OK		
	17	ROOM13-T		20.94	°C	0.000	AL!	Tak	Tak	Nie	Tak	OK		
	18	ROOM14-T		20.94	°C		ALI	Tak	Tak	Nie	Tak	OK		
	19	ROOM15-T		20.94	°C	0.000	AL!	Tak	Tak	Nie	Tak	OK		
	20	ROOM16-T		21.00	°C	1944 - C	ALI	Tak	Tak	Nie	Tak	OK		
	21	ROOM17-T		21.00	°C	0.000	AL!	Tak	Tak	Nie	Tak	OK		
	22	ROOM18-T		20.88	°C	19222	ALI	Tak	Tak	Nie	Tak	OK	.	
	•				111							۲		

Rys 14. Widok okna monitorowania MODBUS programu ADAUtil

6.3.1. KONFIGURACJA KOMUNIKACJI MODBUS-RTU

Dialog [Monitorowanie MODBUS] udostępnia następujące elementy konfiguracji komunikacji MODBUS-RTU :

Adres modułu [1-247]	- umożliwia wpisanie adresu modułu ADA-401WP, który będzie odpytywany protokołem MODBUS-RTU.
Port szeregowy	 jest ustawiany w oknie [Komunikacja].
Prędkość transmisji	- umożliwia wybór prędkości transmisji dla danego modułu.
Liczba bitów danych	- brak wyboru.
Kontrola parzystości	- umożliwia wybór sposobu kontroli parzystości w formacie danych.
Bity stopu	- umożliwia wybór liczby bitów stopu w formacie danych.
Funkcja	 umożliwia wybór funkcji dla protokołu MODBUS-RTU, którą program będzie odpytywać moduł ADA- 401WP.

6.3.2. MONITOROWANIE MODUŁU - MODBUS-RTU

Dialog [Monitorowanie MODBUS] udostępnia następujące elementy komunikacji MODBUS-RTU :

Monitoruj

Naciśnięcie przycisku [Monitoruj] powoduje odczyt temperatury i stanu z kanałów pomiarowych modułu ADA-401WP protokołem MODBUS-RTU.

Ponowne naciśniecie przycisku [Monitorui] powoduje przerwanie odczytu temperatury i stanu z kanałów pomiarowych modułu.

Dziennik komunikacji MODBUS

Dodatkowym elementem diagnostyki protokołu MODBUS-RTU jest sekcja [Dziennik komunikacji MODBUS], gdzie zapisywane są ramki zapytania i odpowiedzi występujące podczas monitorowania temperatury i stanu kanałów pomiarowych. Tabela [Monitorowanie MODBUS] posiada nastepujace kolumny -

Kanał	- numer kanału pomiarowego.
Lokalizacja	- miejsce zainstalowania czujnika.
Progres	- poziomy wskaźnik progresji pomiaru.
Wartość	- wartość pomiaru odczytana z czujnika .
J.m.	 jednostka miary mierzonej przez czujnik wielkości.
W <wl< td=""><td>- aktywne pole oznacza, że odczytana z czujnika wartość pomiaru jest niższa od dolnego progu pomiaru WL.</td></wl<>	- aktywne pole oznacza, że odczytana z czujnika wartość pomiaru jest niższa od dolnego progu pomiaru WL.
W=>WH	- aktywne pole oznacza, że odczytana z czujnika wartość pomiaru jest wyższa od górnego progu pomiaru WH .
Odblokowany	 aktywne pole informuje, że kanał pomiarowy jest odblokowany i dane pomiarowe oraz stan kanału są aktualizowane na bieżaco.
Przypisany	 - aktywne pole informuje, że czujnik o numerze N/S został przypisany do kanału pomiarowego (odpowiednik przykręcenia czujnika temperatury np. Pt. do zacisków przetwornika analogowego).
Zajęty Wykryty CRC	- aktýwne pole oznacza, że aktualnie czujnik jest zajęty przetwarzaniem danych. - aktywne pole oznacza, że wykryto czujnik o numerze seryjnym z pola {N/S Czujnika]. - aktywne pole CRC oznacza błąd CRC pamięci czujnika lub błąd podłączenia.

Aplikacja AdaUtil w tabeli [Monitorowanie MODBUS] wizualizuje stany kanałów pomiarowych za pomocą kolorów w następujący sposób :

Pola [Lokalizacja], [Temp].

Czerwony - stan alarmowy kanału, przekroczenie progów TL lub TH. Zielony – stan normalny kanału pomiarowego.

Pola [T<TL], [T=>TH], [Odbl.], [Przyp.], [Zajęty], [Wykryty], [CRC]

Żółty – stan alarmowy danego pola w kanale pomiarowym. Biały - stan normalny danego pola w kanale pomiarowym.

7. IMPLEMENTACJA PROTOKOŁU MODBUS-RTU

Moduł ADA-401WP pełni funkcję węzła dla sieci 1-WIRE. Każdy węzeł można zaadresować i połączyć do magistrali RS485 i tym samym umożliwić współprace wielu rozproszonych sieci 1-WIRE z oddalonym systemem monitorowania np. temperatury, wilgotności, ciśnienia atmosferycznego, stężenia CO₂, itp. Długość magistrali RS485 można wydłużać o odcinki 1200m poprzez zastosowanie separatorów RS485 ADA-4040 oraz HUB'ów RS485 ADA-4044H.

Zastosowanie protokołu MODBUS-RTU do komunikacji między modułami ADA-401WP a systemem typu SCADA lub sterownikiem PLC umożliwia łatwą integrację czujników z interfejsem 1-WIRE w ramach istniejących systemów automatyki.

7.1. TABELA ADRESÓW MODBUS-RTU

7.1.1. REJESTRY MODBUS KANAŁÓW POMIAROWYCH ODCZYTYWANE FUNKCJĄ 04 (3X – REFERENCES) INPUT REGISTERS LUB FUNKCJĄ 03 (4X – REFERENCES) HOLDING REGISTERS

Adres 3X (F04)	Adres 4X (F03)	Numer kanału pomiarowego	Adres danych kanału pomiarowego	Opis danych	Atrybut	Wartość				
Wartości pomiarów dla kanałów pomiarowych										
30001	40001	0	0	Wartość pomiaru	R	16-bitowy rejestr				
30002	40002	1	1	Wartość pomiaru	R	16-bitowy rejestr				
30003	40003	2	2	Wartość pomiaru	R	16-bitowy rejestr				
30004	40004	3	3	Wartość pomiaru	R	16-bitowy rejestr				
30005	40005	4	4	Wartość pomiaru	R	16-bitowy rejestr				
30006	40006	5	5	Wartość pomiaru	R	16-bitowy rejestr				
30007	40007	6	6	Wartość pomiaru	R	16-bitowy rejestr				
30008	40008	7	7	Wartość pomiaru	R	16-bitowy rejestr				
30009	40009	8	8	Wartość pomiaru	R	16-bitowy rejestr				
30064	40064	63	63	Wartość pomiaru	R	16-bitowy rejestr				
			Stan kan	ałów pomiarowych						
30201	40201	0	200	Stan kanału	R	16-bitowy rejestr				
30202	40202	1	201	Stan kanału	R	16-bitowy rejestr				
30203	40203	2	202	Stan kanału	R	16-bitowy rejestr				
30204	40204	3	203	Stan kanału	R	16-bitowy rejestr				
30204	40204	4	204	Stan kanału	R	16-bitowy rejestr				
30206	40206	5	205	Stan kanału	R	16-bitowy rejestr				
30207	40207	6	206	Stan kanału	R	16-bitowy rejestr				
30208	40208	7	207	Stan kanału	R	16-bitowy rejestr				
30209	40209	8	208	Stan kanału	R	16-bitowy rejestr				
30264	40264	63	263	Stan kanału	R	16-bitowy rejestr				
			Odczyt num Numer seryjn	neru seryjnego układu y to 8-bajtów B0,B1B7						
30401	40401	0	400	Numer seryjny SN-C00-B0-B1	R	16-bitowy rejestr				
30402	40402	0	401	Numer seryjny SN-C00-B2-B3	R	16-bitowy rejestr				
30403	40403	0	402	Numer seryjny SN-C00-B4-B5	R	16-bitowy rejestr				
30404	40404	0	403	Numer seryjny SN-C00-B6-B7	R	16-bitowy rejestr				
30405	40405	1	404	Numer seryjny SN-C01-B0-B1	R	16-bitowy rejestr				
30406	40406	1	405	Numer seryjny SN-C01-B2-B3	R	16-bitowy rejestr				
30407	40407	1	406	Numer seryjny SN-C01-B4-B5	R	16-bitowy rejestr				
30408	40408	1	407	Numer seryjny SN-C01-B6-B7	R	16-bitowy rejestr				
30653	40653	63	652	Numer seryjny SN-C63-B0-B1	R	16-bitowy rejestr				
30654	40654	63	653	Numer seryjny SN-C63-B0-B1	R	16-bitowy rejestr				
30655	40655	63	654	Numer seryjny SN-C63-B0-B1	R	16-bitowy rejestr				
30656	40656	63	655	Numer seryjny SN-C63-B0-B1	R	16-bitowy rejestr				

7.2. BUDOWA RAMKI PROTOKOŁU MODBUS-RTU

Adres urządzenia (1-bajt) | Funkcja (1-bajt) | Dane (n-bajtów) | CRC-16Lo (1-bajt) | CRC-16Hi (1-bajt)

7.3. WYKORZYSTYWANE FUNKCJE PROTOKOŁU MODBUS-RTU

Kod Funkcji	Opis
03 (0x03)	Odczyt wartości pomiaru i stanu kanału pomiarowego
04 (0x04)	Odczyt wartości pomiaru i stanu kanału pomiarowego

7.3.1. ODCZYT WARTOŚCI POMIARÓW Z KANAŁÓW POMIAROWYCH

7.3.1.1. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI TEMPERATURY Z KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy do odczytu wartości pomiaru z kanału pomiarowego (czujnika). Wartość pomiaru odczytywana z kanału pomiarowego (czujnika) jest reprezentowana przez 16-bitowy rejestr. Rejestry z wartością pomiaru temperatury są w formacie liczby całkowitej 16-bitowej ze znakiem (w C/C++ typ short int).

Rzeczywistą wartość temperatury wyrażoną w °C (-55 – +125 [°C]) otrzymujemy z odczytanego rejestru według poniższych algorytmów stosując odpowiednią wartość podzielnika **DW=100** (tabela poniżej).

Tabela wartości podzielnika DW

Mierzona / Zadana wielkość	Jenostka miary	Wartość podzielnika DW	Mierzona / Zadana wielkość	Jenostka miary	Wartość podzielnika DW
Temperatura	°C	100	Temperatura czujnika PT1000	°C PT1000	10
Wilgotność względna	%RH	10	Przetwornik 0-10VDC	V U10	100
Oświetlenie	%Lux	10	Przetwornik 0-20mADC	mA A20	100
Nasłonecznienie	%SLux	10	Układ DS2401 numer seryjny	S/N	Brak
Zadajnik temperatury	(TA)°C	10			
Zadajnik wartosci procentowej	(PA)%	10			
Ciśnienie atmosferyczne	hPa	10			
Stężenie CO2	CO2 ppm	1			
Temperatura czujnika PT100	°C PT100	10			
Temperatura czujnika PT500	°C PT500	10			

Algorytm 1. Odczytany rejestr zapisujemy do zmiennej typu rzeczywistego (float) a następnie dzielimy ją przez podzielnik DW.

// Fragment kodu w języku C (VS6.0) prezentujący powyższy algorytm

short int siRejPomiaru; float fWartoscPomiaru

fWartoscPomiaru = (float)siRejestrPomiaru; fWartoscPomiaru = fWartoscPomiaru / **DW**;

Algorytm 2.Odczytany rejestr zapisujemy do zmiennej typu całkowitego 16-bitowego (short int) a następnie dzielimy ją przez podzielnik **DW**, otrzymana reszta z dzielenia to liczba setnych części wartości pomiaru.

// Fragment kodu w języku C (VS6.0) prezentujący powyższy algorytm short int siRejPomiaru;

div_t div_WartoscPomiaru;

div_WartoscPomiaru = div((int)siRejestrPomiaru, **DW**)

printf("Całkowita wartość pomiaru = %d\n, Setne części wartości pomiaru = %d\n",

div_WartoscPomiaru.quot, div_WartoscPomiaru.rem);

Zapytanie

Nr.Bajtu	Oznaczenie	Rozmiar	Wartość [hex]
00	Adres modułu	1 Bajt	01 [01 do F7]
01	Kod funkcji	1 Bajt	03 / 04
02	Adres rejestru Hi	1 Bajt	00
03	Adres rejestru Lo	1 Bajt	00

Nr.Bajtu	Oznaczenie	Rozmiar	Wartość [hex]
04	Liczba rejestrów Hi	1 Bajt	00
05	Liczba rejestrów Lo	1 Bajt	02
06	CRC-Lo	1 Bajt	
07	CRC-Hi	1Bajt	

Przykład. Odczyt temperatury z 2 kanałów (adres 40001 do 40002 / adres 30001 do 30002)

01-03-00-00-00-02-CRCLo-CRCHi 01-04-00-00-00-02-CRCLo-CRCHi

<u>Odpowiedź</u>

Nr.Bajtu	Oznacz	Rozmiar	Wartość [hex]
00	Adres modułu	1-Bajt	01 [01 do F7]
01	Kod funkcji	1-Bajt	03 / 04
02	Liczba bajtów danych	N-Bajt	04 [zależne od zapytania (4)]
03	Dane1-Hi	1-Bajt	09
04	Dane1-Lo	1-Bajt	60
05	Dane2-Hi	1-Bajt	09
06	Dane2-Lo	1-Bajt	92
07	CRC-Lo	1-Bajt	
08	CRC-Hi	1-Bajt	

Przykład. Odczyt temperatury z 2 kanałów (adres 40001 do 40002 / adres 30001 do 30002)

01-03-04-09-60-09-92-CRCLo-CRCHi 01-04-04-09-60-09-92-CRCLo-CRCHi

W odpowiedzi temperatura kanałów od 0 do 1 jest przedstawiona jako 4-bajty o wartościach: -kanał_0 = $0x0960 \Rightarrow 2400/100 \Rightarrow 24,00^{\circ}C$ -kanał_1 = $0x0992 \Rightarrow 2450/100 \Rightarrow 24,50^{\circ}C$

Odpowiedź - w przypadku wystąpienia błędu

Nr.Bajtu	Oznacz	Rozmiar	Wartość [hex]
00	Adres modułu	1-Bajt	01 [01 do F7]
01	Kod funkcji	1-Bajt	83 / 84
02	Kod błędu	1-Bajt	01-nieznana funkcja 02-nieznany adres danych 03-nieznana wartość danych 04-wystąpił nieznany błąd podczas przetwarzania zapytania
03	CRC-Lo	1-Bajt	
04	CRC-Hi	1-Bajt	

7.3.1.2. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI WILGOTNOŚCI WZGLĘDNEJ Z KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy do odczytu wartości pomiaru z kanału pomiarowego (czujnika). Wartości pomiaru odczytywana z kanału pomiarowego (czujnika) jest reprezentowana przez 16-bitowy rejestr. Rejestry z wartością pomiaru wilgotności względnej są w formacie liczby całkowitej 16-bitowej ze znakiem (w C/C++ typ short int).

Rzeczywistą wartość wilgotności względnej wyrażoną w procentach (0 – 100 [%RH]) otrzymujemy z odczytanego rejestru według algorytmów z p. 7.3.1.1 stosując odpowiednią wartość podzielnika **DW = 10** (tabela p 7.3.1.1).

7.3.1.3. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI CIŚNIENIA ATMOSFERYCZNEGO Z KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy do odczytu wartości pomiaru z kanału pomiarowego (czujnika). Wartości pomiaru odczytywana z kanału pomiarowego (czujnika) jest reprezentowana przez 16-bitowy rejestr. Rejestry z wartością pomiaru ciśnienia atmosferycznego są w formacie liczby całkowitej 16-bitowej ze znakiem (w C/C++ typ short int).

Rzeczywistą wartość ciśnienia atmosferycznego wyrażoną w hPa (150 – 1150 [hPa]) otrzymujemy z odczytanego rejestru według algorytmów z p. 7.3.1.1 stosując odpowiednią wartość podzielnika **DW = 10** (tabela p 7.3.1.1).

7.3.1.4. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI NATĘŻENIA OSWIETLENIA Z KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy do odczytu wartości pomiaru z kanału pomiarowego (czujnika). Wartości pomiaru odczytywana z kanału pomiarowego (czujnika) jest reprezentowana przez 16-bitowy rejestr. Rejestry z wartością pomiaru natężenia oświetlenia są w formacie liczby całkowitej 16-bitowej ze znakiem (w C/C++ typ short int).

Rzeczywistą wartość natężenia oświetlenia wyrażoną w procentach (0 – 100 [%Lux]) otrzymujemy z odczytanego rejestru według algorytmów z p. 7.3.1.1 stosując odpowiednią wartość podzielnika **DW = 10** (tabela p 7.3.1.1).

7.3.1.5. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI NATĘŻENIA NASŁONECZNIENIA Z KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy do odczytu wartości pomiaru z kanału pomiarowego (czujnika). Wartości pomiaru odczytywana z kanału pomiarowego (czujnika) jest reprezentowana przez 16-bitowy rejestr. Rejestry z wartością pomiaru natężenia nasłonecznienia są w formacie liczby całkowitej 16-bitowej ze znakiem (w C/C++ typ short int).

Rzeczywistą wartość natężenia nasłonecznienia wyrażoną w procentach (0 – 100 [%SLux]) otrzymujemy z odczytanego rejestru według algorytmów z p. 7.3.1.1 stosując odpowiednią wartość podzielnika **DW = 10** (tabela p 7.3.1.1).

7.3.1.6. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI TEMPERATURY USTAWIONEJ W ZADAJNIKU TEMPERATURY Z KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy do odczytu wartości pomiaru z kanału pomiarowego (czujnika). Wartości pomiaru odczytywana z kanału pomiarowego (czujnika) jest reprezentowana przez 16-bitowy rejestr. Rejestry z wartością temperatury ustawionej w zadajniku temperatury są w formacie liczby całkowitej 16-bitowej ze znakiem (w C/C++ typ short int).

Rzeczywistą wartość temperatury ustawionej w zadajniku temperatury wyrażoną w °C (5 – 40 [TA(°C)]) otrzymujemy z odczytanego rejestru według algorytmów z p. 7.3.1.1 stosując odpowiednią wartość podzielnika **DW = 10** (tabela p 7.3.1.1).

7.3.1.7. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI PROCENTÓW USTAWIONEJ W ZADAJNIKU PROCENTÓW Z KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy do odczytu wartości pomiaru z kanału pomiarowego (czujnika). Wartości pomiaru odczytywana z kanału pomiarowego (czujnika) jest reprezentowana przez 16-bitowy rejestr. Rejestry z wartością procentów ustawionej w zadajniku procentów są w formacie liczby całkowitej 16-bitowej ze znakiem (w C/C++ typ short int).

Rzeczywistą wartość procentów ustawionej w zadajniku procentów wyrażoną w procentach (0 – 100 [PA(%)]) otrzymujemy z odczytanego rejestru według algorytmów z p. 7.3.1.1 stosując odpowiednią wartość podzielnika **DW = 10** (tabela p 7.3.1.1).

7.3.1.8. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI KONCENTRACJI CO2 Z KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy do odczytu wartości pomiaru z kanału pomiarowego (czujnika). Wartości pomiaru odczytywana z kanału pomiarowego (czujnika) jest reprezentowana przez 16-bitowy rejestr. Rejestry z wartością pomiaru koncentracji CO2 są w formacie liczby całkowitej 16-bitowej ze znakiem (w C/C++ typ short int).

Rzeczywistą wartość koncentracji CO2 wyrażoną w ppm (350 – 10000 [ppm]) otrzymujemy z odczytanego rejestru według algorytmów z p. 7.3.1.1 stosując odpowiednią wartość podzielnika **DW = 1** (tabela p 7.3.1.1).

7.3.1.9. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI TEMPERATURY CZUJNIKA PT100, PT500, PT1000 Z KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy do odczytu wartości pomiaru z kanału pomiarowego (przetwornika DES-215-PT). Wartości pomiaru odczytywana z kanału pomiarowego (przetwornika DES-215-PT) jest reprezentowana przez 16-bitowy rejestr. Rejestry z wartością pomiaru temperatury z przetwornika PT100, PT500, PT1000 są w formacie liczby całkowitej 16-bitowej ze znakiem (w C/C++ typ short int).

Rzeczywistą wartość pomiaru napięcia z przetwornika DES-215-PT w °C (-200 – +600 [°C PT100] otrzymujemy z odczytanego rejestru według algorytmów z p. 7.3.1.1 stosując odpowiednią wartość podzielnika **DW = 10** (tabela p 7.3.1.1).

7.3.1.10. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI NAPIĘCIA 0-10V DC Z KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy do odczytu wartości pomiaru z kanału pomiarowego (przetwornika DES-215-U). Wartości pomiaru odczytywana z kanału pomiarowego (przetwornika DES-215-U) jest reprezentowana przez 16-bitowy rejestr. Rejestry z wartością pomiaru napięcia z przetwornika DES-215-U są w formacie liczby całkowitej 16-bitowej ze znakiem (w C/C++ typ short int).

Rzeczywistą wartość pomiaru napięcia z przetwornika DES-215-U w VDC (0 – 10 [V U10]) otrzymujemy z odczytanego rejestru według algorytmów z p. 7.3.1.1 stosując odpowiednią wartość podzielnika **DW = 100** (tabela p 7.3.1.1).

7.3.1.11. FUNKCJA 0x03 / 0x04 – ODCZYT WARTOŚCI NATĘŻENIA PRĄDU 0-20mA DC Z KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy do odczytu wartości pomiaru z kanału pomiarowego (przetwornika DES-215-I). Wartości pomiaru odczytywana z kanału pomiarowego (przetwornika DES-215-I) jest reprezentowana przez 16-bitowy rejestr.

Rejestry z wartością pomiaru natężenia prądu z przetwornika DES-215-I są w formacie liczby całkowitej 16-bitowej ze znakiem (w C/C++ typ short int).

Rzeczywistą wartość pomiaru natężenia prądu z przetwornika DES-215-I w mA DC (0 – 20 [mA A20]) otrzymujemy z odczytanego rejestru według algorytmów z p. 7.3.1.1 stosując odpowiednią wartość podzielnika **DW = 100** (tabela p 7.3.1.1).

7.3.2. FUNKCJA 0x03 / 0x04 - ODCZYT NUMERU SERYJNEGO UKŁADU Z KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy również do odczytu numeru seryjnego układu 1-WIRE z kanału pomiarowego. W przypadku zapytania o nie cały numer seryjny moduł odpowie wyjątkiem 2-nie znany adres danych. Numer seryjny w kanale pomiarowym jest reprezentowany przez cztery 16-bitowe rejestry. Przykładowy numer seryjny układu (hex) : 26 10 17 40 01 00 00 23 będzie zapisany w rejestrach MODBUS jak w tabeli poniżej.

Kanał	Adres Rejestru (dec)	Zawartość Rejestru Hi	Zawartość Rejestru Lo
0	400	Bajt 0 numeru seryjnego 26	Bajt 1 numeru seryjnego 10
0	401	Bajt 2 numeru seryjnego 17	Bajt 3 numeru seryjnego 40
0	402	Bajt 4 numeru seryjnego 01	Bajt 5 numeru seryjnego 00
0	403	Bajt 6 numeru seryjnego 00	Bajt 7 numeru seryjnego 23

Zapytanie o numer seryjny układu z kanału nr 0.

Nr.Bajtu	Oznaczenie	Rozmiar	Wartość [hex]
00	Adres modułu	1 Bajt	01 [01 do F7]
01	Kod funkcji	1 Bajt	03 / 04
02	Adres rejestru Hi	1 Bajt	01
03	Adres rejestru Lo	1 Bajt	90
04	Liczba rejestrów Hi	1 Bajt	00
05	Liczba rejestrów Lo	1 Bajt	04
06	CRC-Lo	1 Bajt	
07	CRC-Hi	1Bajt	

Przykład. Odczyt numeru seryjnego układu z kanału nr 0 (adres 40401 do 40404 / adres 30401 do 30404)

01-03-01-90-00-04-CRCLo-CRCHi 01-04-01-90-00-04-CRCLo-CRCHi

Odpowiedź

Nr.Bajtu	Oznacz	Rozmiar	Wartość [hex]
00	Adres modułu	1-Bajt	01 [01 do F7]
01	Kod funkcji	1-Bajt	03 / 04
02	Liczba bajtów danych	N-Bajt	08 [zależne od zapytania]
03	S/N0-Hi	1-Bajt	26
04	S/N1-Lo	1-Bajt	10
05	S/N2-Hi	1-Bajt	17
06	S/N3-Lo	1-Bajt	40
07	S/N4-Hi	1-Bajt	01
08	S/N5-Lo	1-Bajt	00
09	S/N6-Hi	1-Bajt	00
10	S/N7-Lo	1-Bajt	23

Nr.Bajtu	Oznacz	Rozmiar	Wartość [hex]
11	CRC-Lo	1-Bajt	
12	CRC-Hi	1-Bajt	

Przykład. Odczyt numeru seryjnego układu z kanału nr 0 (adres 40401 do 40404 / adres 30401 do 30404)

01-03-08-26-10-17-40-01-00-00-23-CRCLo-CRCHi 01-04-08-26-10-17-40-01-00-00-23-CRCLo-CRCHi

W odpowiedzi numer seryjny układu z kanału 0: 26-10-17-40-01-00-00-23

Odpowiedź - w przypadku wystąpienia błędu

Nr.Bajtu	Oznacz	Rozmiar	Wartość [hex]
00	Adres modułu	1-Bajt	01 [1 do F7]
01	Kod funkcji	1-Bajt	83 / 84
02	Kod błędu	1-Bajt	01-nieznana funkcja 02-nieznany adres danych 03-nieznana wartość danych 04-wystąpił nieznany błąd podczas przetwarzania zapytania
03	CRC-Lo	1-Bajt	
04	CRC-Hi	1-Bajt	

7.3.3. FUNKCJA 0x03 / 0x04 - ODCZYT STANU KANAŁU POMIAROWEGO [4X / 3X-REFERENCES]

Funkcja 0x03 / 0x04 służy również do odczytu stanu kanału pomiarowego. Stan każdego kanału pomiarowego jest reprezentowany przez 16-bitowy rejestr :

Rejestr stanu kanału pomiarowego

Bit	Stan kanału Bajt Lo	Bit	Stan kanału Bajt Hi (od wersji 1.008 firmware)
0	Czujnik w czasie przetwarzania 0 - NIE 1 - TAK	0	Zwarcie na magistrali 1-WIRE 0 - NIE 1 - TAK
1	Czujnik wykryty 0 - NIE 1 - TAK	1	Układ DS18xx obecny na magistrali 1-WIRE (0) 0 - NIE 1 - TAK
2	Kanał odblokowany 0 - NIE 1 - TAK	2	Dodatkowe zasilanie (magistrala 3-przewodowa 0 - NIE 1 - TAK
3	Przekroczenie dolnego progu temperatury T <tl 0 - NIE 1 - TAK</tl 	3	Parasite Mode (magistrala 2-przewodowa) 0 - NIE 1 - TAK
4	Przekroczenie górnego progu temperatury T≥TH 0 - NIE 1 - TAK	4	Błędy w komunikacji 1-WIRE 0 - NIE 1 - TAK
5	Czujnik przypisany do kanału 0 - NIE 1 - TAK	5	Wykryto kontroler DS2480B 0 - NIE 1 - TAK
6	Zarezerwowany 0 - NIE 1 - TAK	6	Zarezerwowany (0) 0 - NIE 1 - TAK
7	Błąd CRC Scratchpad'u czujnika 0 - NIE 1 - TAK	7	Zarezerwowany (0) 0 - NIE 1 - TAK

Zapytanie

Nr.Bajtu	Oznaczenie	Rozmiar	Wartość [hex]
00	Adres modułu	1 Bajt	01 [01 do F7]
01	Kod funkcji	1 Bajt	03 / 04

Nr.Bajtu	Oznaczenie	Rozmiar	Wartość [hex]
02	Adres rejestru Hi	1 Bajt	00
03	Adres rejestru Lo	1 Bajt	C9
04	Liczba rejestrów Hi	1 Bajt	00
05	Liczba rejestrów Lo	1 Bajt	02
06	CRC-Lo	1 Bajt	
07	CRC-Hi	1Bajt	

Przykład. Odczyt stanu 2 kanałów (adres 40201 do 40202 / adres 30201 do 30202)

01-03-00-C9-00-02-CRCLo-CRCHi 01-04-00-C9-00-02-CRCLo-CRCHi

<u>Odpowiedź</u>

Nr.Bajtu	Oznacz	Rozmiar	Wartość [hex]
00	Adres modułu	1-Bajt	01 [01 do F7]
01	Kod funkcji	1-Bajt	03 / 04
02	Liczba bajtów danych	N-Bajt	04 [zależne od zapytania (4)]
03	Stan1-Hi	1-Bajt	00
04	Stan1-Lo	1-Bajt	01
05	Stan2-Hi	1-Bajt	00
06	Stan2-Lo	1-Bajt	02
07	CRC-Lo	1-Bajt	
08	CRC-Hi	1-Bajt	

Przykład. Odczyt stanu 2 kanałów (adres 40201 do 40202 / adres 30201 do 30202)

01-03-04-00-01-00-02-CRCLo-CRCHi 01-04-04-00-01-00-02-CRCLo-CRCHi

W odpowiedzi stan kanałów 0 do 1 jest przedstawiony jako 4-bajty o wartościach: -kanał_0 hi = 00, lo = 01 – czujnik w czasie przetwarzania -kanał_1 hi = 00, lo = 02 – wykryto czujnik

Odpowiedź - w przypadku wystąpienia błędu

Nr.Bajtu	Oznacz	Rozmiar	Wartość [hex]
00	Adres modułu	1-Bajt	01 [1 do F7]
01	Kod funkcji	1-Bajt	83 / 84
02	Kod błędu	1-Bajt	01-nieznana funkcja 02-nieznany adres danych 03-nieznana wartość danych 04-wystąpił nieznany błąd podczas przetwarzania zapytania
03	CRC-Lo	1-Bajt	
04	CRC-Hi	1-Bajt	

8. DANE TECHNICZNE

DANE TECHNICZNE						
Parametry Transmisji						
Interfejs	RS-485	1-WIRE				
Złącze	Złącze śrubowe maks. Ø 2,5mm²	Złącze śrubowe maks. Ø 2,5mm²				
Długość magistrali	1200 m	Do 300 m zależna od topologii magistrali 1-WIRE i użytych kabli				
Maksymalna liczba podłączonych urządzeń	32 urządzenia	64 czujniki				
Maksymalna prędkość transmisji danych	do 230,4 kbps	standard: do 16,3 kbps,				
Linia transmisyjna	Kabel skrętkowy 2-parowy, np. UTP 4x2x0,5 (24AWG), ekranowany w środowisku o dużych zakłóceniach np.STP 1x2x0,5(24AWG).	Kabel skrętkowy 1-parowy, 2-parowy, np. UTP 4x2x0,5 (24AWG), ekranowany w środowisku o dużych zakłóceniach np. STP 4x2x0,5(24AWG).				
Typ transmisji	RS485/RS422 MODBUS - halfduplex (zapytanie - odpowiedź)	fullduplex (nadawanie i odbiór na tym samym przewodzie)				
Zgodność ze Standardami	1-WIRE, EIA-485, CCITT V.11.					
Sygnalizacja optyczna	 zielona dioda PWR zasilanie, czerwona dioda RX odbiór danych przez interfejs 1-WIRE, żółta dioda TX transmisja danych przez interfejs 1-WIRE. 					
Zakres i dokładność pomiarów						
Zakres pomiarowy czujników	Określono w instrukcjach czujników.					
Dokładność pomiarów czujników	Określono w instrukcjach czujników.					
	Parametry Elektryczne					
Napięcie zasilania	10 - <u>24</u> – 30 V DC					
Kabel zasilający	Zalecana długość przewodu zasilającego – do 3m					
Moc pobierana	3W					
Zabezpieczenie przed odwrotną polaryzacją zasilania	Tak					
Izolacja galwaniczna	 pomiędzy obwodem zasilania a torem sygnałowym RS-485 na poziomie 3kVDC, pomiędzy torem sygnałowym 1-WIRE a RS-485 na poziomie 3kVDC. 					
Kompatybilność elektromagnetyczna	Odporność na zakłócenia według normy PN-EN 55024. Emisja zakłóceń według normy PN-EN 55022.					
Wymagania bezpieczeństwa	Według normy PN-EN60950.					
Środowisko	Handlowe i lekko uprzemysłowione.					
	Warunki Środowiskowe					
Temperatura otoczenia	-25 ÷ + <u>2</u> ;	<u>3</u> ÷ +50°C				
Wilgotność względna powietrza	5 ÷ 95% - bez kondensacji					
Temperatura przechowywania	-40 ÷ +70 °C					
	Obudowa					
Wymiary	53 x 90 x 58 mm					
Materiał	ABS/PC (samogasnący)					
Stopień ochrony obudowy	IP40					
Stopień ochrony zacisków	IP20					
Masa	0,10 kg					
Wykonanie wg. Standardu	DIN EN50022, DIN EN43880					
Położenie podczas pracy	Dow	olne.				
Sposób montażu	Na szynie zgodnej ze st	andardem DIN35 / TS35.				

Drogi Kliencie,

Dziękujemy Państwu za zakup produktu Firmy **CEL-MAR**.

Doceniając Państwa działalność, mamy nadzieję że ta instrukcja obsługi pomogła w podłączeniu i uruchomieniu modułu **ADA-401WP**. Pragniemy poinformować również iż jesteśmy producentem posiadającym jedną z najszerszych gam produktów transmisji danych wliczając: konwertery transmisji danych interfejsów RS232, RS485, RS422, USB, konwertery światłowodowe, pętle prądowe, separatory/powielacze (repeater'y).

Prosimy o kontakt w celu wyrażenia opinii o produkcie oraz jak możemy zaspokoić Państwa obecne i przyszłe oczekiwania.

Tel	: +48 41 362-12-46
Tel/fax	: +48 41 361-07-70
Web	: <u>http://www.cel-mar.pl</u>
Biuro	: <u>biuro@cel-mar.pl</u>
Dział handlowy	: handlowy@cel-mar.pl
Informacja techniczna	: <u>serwis@cel-mar.pl</u>
	Tel Tel/fax Web Biuro Dział handlowy Informacja techniczna